Skip to main content
Log in

Structure and Tribological Performance of Nanostructured ZrO2-3 mol% Y2O3 Coatings Deposited by Air Plasma Spraying

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this study, nanostructured ZrO2-3 mol% Y2O3 coatings were deposited by air plasma spray using reconstituted feedstock. The coating structures were characterized by x-ray diffractometer, micro-Raman spectrometer, field emission scanning electron microscope, and transmission electron microscope. It is revealed that the as-sprayed coating is mainly composed of columnar grains with diameters <100 nm and demonstrates the better toughness, higher microhardness, and lower porosity. It consists only of nontransformable tetragonal ZrO2 phase. The tribological performance of the coating was examined with a ball-on-disk apparatus under dry sliding conditions. The results show that the friction coefficient of as-sprayed coating was approximately one-fifth of the conventional zirconia coating and wear rate was lower one order of magnitude than the conventional zirconia coating. The dominant wear mechanism is abrasive wear. The improved wear resistance can be attributed to the increased mechanical properties of as-sprayed coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Chevalier, What Future for Zirconia as a Biomaterial?, Biomaterials, 2006, 27, p 535-543

    Article  CAS  PubMed  Google Scholar 

  2. R.S. Lima and B.R. Marple, Thermal Spray Coatings Engineered from Nanostructured Ceramic Agglomerated Powders for Structural, Thermal Barrier and Biomedical Applications: A Review, J. Thermal Spray Technol., 2007, 16(1), p 40-63

    Article  CAS  ADS  Google Scholar 

  3. G.C. Wang, X.Y. Liu, J.H. Gao, and C.X. Ding, In Vitro Bioactivity and Phase Stability of Plasma-Sprayed Nanostructured 3Y-TZP Coatings, Acta Biomater., 2009, 5, p 2270-2278

    Article  CAS  PubMed  Google Scholar 

  4. W.F. Li, X.Y. Liu, A.P. Huang, and P.K. Chu, Structure and Properties of Zirconia (ZrO2) Films Fabricated by Plasma-Assisted Cathodic Arc Deposition, J. Phys. D Appl. Phys., 2007, 40, p 2293-2299

    Article  CAS  ADS  Google Scholar 

  5. G.H. Wang, X.Y. Liu, and C.X. Ding, Phase Composition and In Vitro Bioactivity of Plasma Sprayed Calcia Stabilized Zirconia Coatings, Surf. Coat. Technol., 2008, 202, p 5824-5831

    Article  CAS  Google Scholar 

  6. K.H. Zum Gahr, W. Bundschuh, and B. Zimmerlin, Effect of Grain Size on Friction and Sliding Wear of Oxide Ceramics, Wear, 1993, 162-164, p 269-279

    Article  CAS  Google Scholar 

  7. G.S.A.M. Theunissen, J.S. Bouma, A.J.A. Winnubst, and A.J. Burggraag, Mechanical Properties of Ultra-Fine Grained Zirconia Ceramics, J. Mater. Sci., 1992, 27(14), p 4429-4438

    Article  CAS  ADS  Google Scholar 

  8. L.L. Shaw, D. Goberman, R. Ren, M. Gell, S. Jiang, Y. Wang, T. Danny Xiao, and P.R. Strutt, The Dependency of Microstructure and Properties of Nanostructured Coatings on Plasma Spray Conditions, Surf. Coat. Technol., 2000, 130, p 1-8

    Article  CAS  Google Scholar 

  9. N.P. Rao, H.J. Lee, D.J. Hansen, J.V.R. Heberlein, P.H. McMurry, and S.L. Girshick, Nanostructured Materials Production by Hypersonic Plasma Particle Deposition, Nano-structured Mater., 1997, 9, p 129-132

    Article  CAS  Google Scholar 

  10. Z.P. Lu, J. Heberlein, and E. Pfender, Process Study of Thermal Plasma Chemical Vapor Deposition of Diamond, Part 1: Substrate Materials, Temperature, and Methane Concentration, Plasma. Chem. Plasma Process., 1992, 12, p 35-53

    Article  Google Scholar 

  11. F. Gitzhofer, E. Bouyer, and M. I. Boulos, Suspension Plasma Spray Deposition, US Patent No. 5,609,921 (1997)

  12. J.O. Berghaus, B.R. Marple, and C. Moreau, Suspension Plasma Spraying of Nanostructured WC-12Co Coatings, J. Thermal Spray. Technol., 2006, 15(4), p 676-681

    Article  CAS  ADS  Google Scholar 

  13. R.S. Lima and B.R. Marple, Superior Performance of High-Velocity Oxyful-Sprayed Nanostructured TiO2 in Comparison to Air Plasmas-Sprayed Conventional Al2O3-13TiO2, J. Thermal Spray Technol., 2005, 14(3), p 397-404

    Article  CAS  ADS  Google Scholar 

  14. X. Zhao, X. He, Y. Sun, J. Yi, and P. Xiao, Superhard and Tougher SiC/Diamond-Like-Carbon Composite Films Produced by Electron Beam Physical Vapor Deposition, Acta Mater., 2009, 57, p 893-902

    Article  CAS  Google Scholar 

  15. H. Chen and C.X. Ding, Nanostructured Zirconia Coating Prepared by Atmospheric Plasma Spraying, Surf. Coat. Technol., 2002, 150, p 31-36

    Article  CAS  Google Scholar 

  16. K.T. Fang and Y. Wang, Number-Theoretic Methods in Statistics, Chapman and Hall, London, 1993

    Google Scholar 

  17. P.D. Harmsworth and R. Stevens, Microstructure of Zirconia-Yttria Plasma-Sprayed Thermal Barrier Coatings, J. Thermal Spray Technol., 1995, 4(3), p 245-251

    Article  Google Scholar 

  18. A. Karimi, Ch. Verdon, and G. Barbezat, Microstructure and Hydroabrasive Wear Behaviour of High Velocity Oxy-Fuel Thermally Sprayed WC-Co(Cr) Coatings, Surf. Coat. Technol., 1993, 57, p 81-89

    Article  CAS  Google Scholar 

  19. A. G. Evans, Toughening Mechanisms in Zirconia Alloys, International Conference on the Science and Technology of Zirconia (2nd, 1983, Stuttgart, Germany), Science and Technology of Zircionia II, Advances in Ceramics, Vol 12, N. Claussen and M. Rühle Ed., The American Ceramic Society, Inc., Columbus, OH, 1984, p 193-212

  20. B. Liang and C.X. Ding, Phase Composition of Nanostructured Zirconia Coatings Deposited by Air Plasma Spraying, Surf. Coat. Technol., 2005, 191, p 267-273

    Article  CAS  Google Scholar 

  21. H. Chen, Y.F. Zhang, and C.X. Ding, Tribological Properties of Nanostructured Zirconia Coatings Deposited by Plasma Spraying, Wear, 2002, 253, p 885-893

    Article  CAS  Google Scholar 

  22. B. Liang, C.X. Ding, H.L. Liao, and C. Coddet, Study on Structural Evolution of Nanostructured 3 mol% Yttria Stabilized Zirconia Coatings During Low Temperature Ageing, J. Euro. Ceram. Soc., 2009, 29, p 2267-2273

    Article  CAS  Google Scholar 

  23. C.T. Yang and W.J. Wei, Effects of Material Properties and Testing Parameters on Wear Properties of Fine Grain Zirconia, Wear, 2000, 242, p 97-104

    Article  CAS  Google Scholar 

  24. J.E. Hines, Jr., R.C. Bradt, and J.V. Biggers, Grain Size and Porosity Effects on the Abrasive Wear of Alumina, Wear of Materials, W.A. Glaeser, K.C. Ludema, and S.K. Rhee, Ed., American Society of Mechanical Engineers, New York, 1977, p 462-467

    Google Scholar 

  25. Y. He, L. Winnubst, A.J. Burggraaf, H. Verweij, P.G.Th. Varst, and B. With, Influence of Porosity on Friction and Wear of Tetragonal Zirconia Polycrystal, J. Am. Ceram. Soc., 1997, 80(2), p 377-380

    Article  CAS  Google Scholar 

  26. G.W. Stachowiak, G.B. Stachowiak, and A.W. Batchelor, Metallic Film Transfer During Metal-Ceramic Unlubricated Sliding, Wear, 1989, 132, p 361-381

    Article  CAS  Google Scholar 

  27. H. Chen, S. Lee, X. Zheng, and C. Ding, Evaluation of Unlubricated Wear Properties of Plasma-Sprayed Nanostructured and Conventional Zirconia Coatings by SRV Tester, Wear, 2006, 260, p 1053-1060

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, B., Zhang, G., Liao, H.L. et al. Structure and Tribological Performance of Nanostructured ZrO2-3 mol% Y2O3 Coatings Deposited by Air Plasma Spraying. J Therm Spray Tech 19, 1163–1170 (2010). https://doi.org/10.1007/s11666-010-9551-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-010-9551-7

Keywords

Navigation