Skip to main content

Advertisement

Log in

Bactericidal Performance of Flame-Sprayed Nanostructured Titania-Copper Composite Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

A large concern surrounding stainless steel surfaces is the ability of bacteria to grow and attach to them quite easily. One possible solution to destroy these pathogens is to coat surfaces with a biocidal agent. The photocatalytic effect of titanium dioxide (TiO2) is known to have a bactericidal effect. Coatings of TiO2 were prepared on 1010 low carbon steel substrates using an oxy-acetylene flame spray torch. TiO2 coatings containing 5 wt.% copper (Cu) were fabricated to increase the bactericidal effect of the coating. After deposition, the coatings were polished to an average roughness of 1 μm. Solutions of Pseudomonas aeruginosa (PAK) bacteria were placed onto the coating surface for periods of up to 3 h, and the amount of surviving bacteria were counted. Some samples were irradiated with white light and other samples were held in a dark chamber. In coatings of copper-free flame-sprayed TiO2, the high flame temperatures facilitated the conversion of the anatase phase to the rutile phase, which limited the photocatalytic destruction of the bacterial cells. However, TiO2-copper composite coatings showed a large bactericidal effect, killing approximately 75% of PAK bacterial cells after 3 h. Under the same conditions, the TiO2-copper composite coatings had the same bactericidal capabilities as pure copper surfaces, with the composite coatings showing improved bactericidal performance when exposed to light. It was proposed that increased concentrations of reactive oxide species produced due to TiO2 photocatalysis improved the performance of the irradiated TiO2-copper composite coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Lindsay and A. von Holy, Bacterial Biofilms Within the Clinical Setting: What Healthcare Professionals Should Know, J. Hosp. Infec., 2006, 64, p 313-325

    Article  CAS  Google Scholar 

  2. G.P. Bodey, R. Bolivar, V. Fainstein, and L. Jadeja, Infections Caused by Pseudomonas aeruginosa, Rev. Infec. Dis., 1983, 5, p 279-313

    CAS  Google Scholar 

  3. E. Vanhaecke, J. Remon, M. Moors, F. Raes, D. de Rudder, and A. van Peteghem, Kinetics of Pseudomonas aeruginosa Adhesion to 304 and 316-L Stainless Steel: Role of Cell Surface Hydrophobicity, Appl. Environ. Microbiol., 1990, 56, p 788-795

    CAS  PubMed  Google Scholar 

  4. C. Johansen, P. Falholt, and L. Gram, Enzymatic Removal and Disinfection of Bacterial Biofilms, Appl. Environ. Microbiol., 1997, 63, p 3724-3728

    CAS  PubMed  Google Scholar 

  5. C. Ryder, M. Byrd, and D.J. Wozniak, Role of Polysaccharides in Pseudomonas aeruginosa Biofilm Development, Curr. Opin. Microbiol., 2007, 10, p 644-648

    Article  CAS  PubMed  Google Scholar 

  6. Y. Kikuchi, K. Sunada, T. Iyoda, K. Hashimoto, and A. Fujishima, Photocatalytic Bactericidal Effect of TiO2 Thin Films: Dynamic View of the Active Oxygen Species Responsible for the Effect, J. Photochem. Photobiol. A, 1997, 106, p 51-56

    Article  CAS  Google Scholar 

  7. P. Evans and D.W. Sheel, Photoactive and Antibacterial TiO2 Thin Films on Stainless Steel, Surf. Coat. Technol., 2007, 201, p 9319-9324

    Article  CAS  Google Scholar 

  8. B. Jeffery, M. Peppler, R.S. Lima, and A. McDonald, Bactericidal Effects of HVOF-sprayed Nanostructured TiO2 on Pseudomonas aeruginosa, J. Therm. Spray Technol., 2010, 19, p 344-349

    Article  CAS  ADS  Google Scholar 

  9. M.F. Brunella, M.V. Diamanti, M.P. Pedeferri, F. di Fonzo, C.S. Casari, and A. Li Bassi, Photocatalytic Behavior of Different Titanium Dioxide Layers, Thin Solid Films, 2007, 515, p 6309-6313

    Article  CAS  ADS  Google Scholar 

  10. J.A. Imlay, Pathways of Oxidative Damage, Annu. Rev. Microbiol., 2003, 57, p 395-418

    Article  CAS  PubMed  Google Scholar 

  11. L. Brook, P. Evans, H. Foster, M. Pemble, A. Steele, D. Sheel, and H. Yates, Highly Bioactive Silver and Silver/Titania Composite Films Grown by Chemical Vapour Deposition, J. Photochem. Photobiol. A, 2007, 187, p 53-63

    Article  CAS  Google Scholar 

  12. J.L. Clement and P.S. Jarrett, Antibacterial Silver, Metal-Based Drugs, 1994, 5-6, p 467-482

    Article  Google Scholar 

  13. R. Jensen and N. Davidson, Spectrophotometric, Potentiometric, and Density Gradient Ultracentrifugation Studies of the Binding of Silver Ion by DNA, Biopolymers, 1966, 4, p 17-32

    Article  CAS  Google Scholar 

  14. R.S. Lima and B.R. Marple, Thermal Spray Coatings Engineered from Nanostructured Ceramic Agglomerated Powders for Structural, Thermal Barrier and Biomedical Applications: A Review, J. Therm. Spray Technol., 2007, 16, p 40-63

    Article  CAS  ADS  Google Scholar 

  15. R.S. Lima, S.E. Kruger, and B.R. Marple, Towards Engineering Isotropic Behaviour of Mechanical Properties in Thermally Sprayed Ceramic Coatings, Surf. Coat. Technol., 2008, 202, p 3643-3652

    Article  CAS  Google Scholar 

  16. C.L. Giltner, E.J. van Schaik, G.F. Audette, D. Kao, R.S. Hodges, D.J. Hassett, and R.T. Irvin, The Psuedomonas aeruginosa Type IV Pilin Receptor Binding Domain Functions as an Adhesion for Both Biotic and Abiotic Surfaces, Mol. Microbiol., 2000, 59, p 1083-1096

    Article  Google Scholar 

  17. K. Sunada, Y. Kikuchi, K. Hashimoto, and A. Fujishima, Bactericidal and Detoxification Effects of TiO2 Thin Film Photocatalysts, Environ. Sci. Technol., 1998, 32, p 726-728

    Article  CAS  Google Scholar 

  18. N. Berger-Keller, G. Bertrand, C. Filiare, C. Meunier, and C. Coddet, Microstructure of Plasma-Sprayed Titania Coatings Deposited from Spray-Dried Powder, Surf. Coat. Technol., 2007, 168, p 281-290

    Article  Google Scholar 

  19. A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 1972, 238, p 37-38

    Article  CAS  ADS  PubMed  Google Scholar 

  20. G. Yang, C. Li, F. Han, and A. Ohmori, Microstructure and Photocatalytic Performance of High Velocity Oxy-Fuel Sprayed TiO2 Coatings, Thin Solid Films, 2004, 466, p 81-85

    Article  CAS  ADS  Google Scholar 

  21. P. Amézaga-Madrid, G. Nevarez-Moorillon, E. Orrantia-Borunda, and M. Miki-Yoshida, Photoinduced Bactericidal Activity Against Pseudomonas aeruginosa by TiO2 Based Thin Films, FEMS Microbiol. Lett., 2002, 211, p 183-188

    Article  PubMed  Google Scholar 

  22. S. Kuroda, J. Kawakita, M. Watanabe, and H. Katanoda, Warm Spraying—A Novel Coating Process Based on High-Velocity Impact of Solid Particles, Sci. Tech. Adv. Mater., 2008, 9, p 033002

    Article  Google Scholar 

  23. A.G. Gaynor, R.J. Gonzalez, R.M. Davis, and R. Zallen, Characterization of Nanophase Titania Particles Synthesized Using In Situ Steric Stabilization, J. Mater. Res., 1997, 12, p 1755-1765

    Article  CAS  ADS  Google Scholar 

  24. A. Ozturk and B. Cetegen, Experiments on Ceramic Formation from Liquid Precursor Spray Axially Injected into an Oxy-Acetylene Flame, Acta Mater., 2005, 53, p 5203-5211

    Article  CAS  Google Scholar 

  25. M.J. Domek, M.W. LeChevallier, S.C. Cameron, and G.A. McFeters, Evidence for the Role of Copper in the Injury Process of Coliform Bacteria in Drinking Water, Appl. Environ. Microbiol., 1984, 48, p 289-293

    CAS  PubMed  Google Scholar 

  26. S.I. Liochev and I. Fridovich, The Haber-Weiss Cycle—70 Years Later: An Alternative View, Redox Rep., 2002, 7, p 55-57, 59-60

  27. L. McDowell and H. Johnston, The Solubility of Cupric Oxide in Alkali and the Second Dissociation Constant of Cupric Acid. The Analysis of Very Small Amounts of Copper, J. Am. Chem. Soc., 1936, 58, p 2009-2014

    Article  CAS  Google Scholar 

  28. Y. Ohko, K. Hashimoto, and A. Fujishima, Kinetics of Photocatalytic Reactions Under Extremely Low-Intensity UV Illumination on Titanium Dioxide Thin Films, J. Phys. Chem. A, 1997, 101, p 8057-8062

    Article  CAS  Google Scholar 

  29. A. Boelsterli, Mechanistic Toxicology: The molecular Basis of How Chemicals Disrupt Biological Targets, CRC Press, Florida, 2007, p 125-148

    Google Scholar 

  30. W. Vollmer, D. Blanot, and M.A. de Pedro, Peptidoglycan Structure and Architecture, FEMS Microbiol. Rev., 2008, 32, p 149-167

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the assistance of Miss. Mandy Wan with a preliminary study with rough nanostructured TiO2 samples. The authors also thank Dr. Roger S. Lima and Dr. Stefan Pukatzki for reviewing the draft manuscript. Funding for this project was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Government of Alberta Small Equipment Grants Program (SEGP), and the Canada Foundation for Innovation (CFI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. McDonald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

George, N., Mahon, M. & McDonald, A. Bactericidal Performance of Flame-Sprayed Nanostructured Titania-Copper Composite Coatings. J Therm Spray Tech 19, 1042–1053 (2010). https://doi.org/10.1007/s11666-010-9503-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-010-9503-2

Keywords

Navigation