Skip to main content
Log in

3D Modeling of Transport Phenomena and the Injection of the Solution Droplets in the Solution Precursor Plasma Spraying

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Solution precursor plasma spraying has been used to produce finely structured ceramic coatings with nano- and sub-micrometric features. This process involves the injection of a solution spray of ceramic salts into a DC plasma jet under atmospheric condition. During the process, the solvent vaporizes as the droplet travel downstream. Solid particles are finally formed due to the precipitation of the solute, and the particle are heated up and accelerated to the substrate to generate the coating. This article describes a 3D model to simulate the transport phenomena and the trajectory and heating of the solution spray in the process. The jet-spray two-way interactions are considered. A simplified model is employed to simulate the evolution process and the formation of the solid particle from the solution droplet in the plasma jet. The temperature and velocity fields of the jet are obtained and validated. The particle size, velocity, temperature, and position distribution on the substrate are predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Karthikeyan, C.C. Berndt, S. Reddy, J.Y. Wang, A.H. King, H. Herman 1998 Nano-material Deposits Formed by DC Plasma Spraying of Liquid Feedstocks. J. Am. Ceram. Soc. 81:121–128

    Article  CAS  Google Scholar 

  2. N. Padture, K. Schlichting, T. Bhatia, A. Ozturk, B. Cetegen, E. Jordan, M. Gell 2001 Towards Durable Thermal Barrier Coatings with Novel Microstructures Deposited by Solution Precursor Plasma Spray. Acta Mater. 49:2251–2257

    Article  CAS  Google Scholar 

  3. L. Xie, X. Ma, A. Ozturk, E. Jordan, N. Padture, B. Cetegen, D. Xiao, M. Gell 2004 Processing Parameter Effects on Solution Precursor Plasma Spray Process Spray Patterns. Surf. Coat. Technol. 183:51–61

    Article  CAS  Google Scholar 

  4. Fluent Inc., Fluent V6.2 User’s Guide (Lebanon, NH, USA), 2005

  5. D. Choudhury, Introduction to the Renormalization Group Method and Turbulence Modeling, Fluent Inc. Technical Memorandum TM-107 (Lebanon, NH, USA), 1993

  6. M.I. Boulos, P. Fauchais, E. Pfender 1994 Thermal Plasmas: Fundamentals and Applications, Vol. 1. Plenum, New York

    Google Scholar 

  7. M. Jankovic, Study of Atmospheric Plasma Spray Process with the Emphasis on Gas Shrouded Nozzles, PhD Thesis, University of Toronto, 1996

  8. E. Pfender, Y.C. Lee 1985 Particle Dynamics and Particle Heat and Mass Transfer in Thermal Plasmas. Part I. The Motion of a Single Particle without Thermal Effects. Plasma Chem. Plasma Process. 5:211–237

    Article  CAS  Google Scholar 

  9. Y.C. Lee, Y.P. Chyou, E. Pfender 1985 Particle Dynamics and Particle Heat and Mass Transfer in Thermal Plasmas. Part II. Particle Heat and Mass Transfer in Thermal Plasmas. Plasma Chem. Plasma Process., 5:391–416

    Article  Google Scholar 

  10. Chen X., Pfender E. 1983 Behavior of Small Particles in a Thermal Plasma Flow. Plasma Chem. Plasma Process. 3:351–366

    Article  CAS  Google Scholar 

  11. P. Proulx, J. Mostaghimi, M.I. Boulos 1987 Heating of Powders in an RF Inductively Coupled Plasma under Dense Loading Conditions. Plasma Chem. Plasma Process. 7:29–52

    Article  CAS  Google Scholar 

  12. R. Ye, P. Proulx, M.I. Boulos 2000 Particle Turbulent Dispersion and Loading Effects in an Inductively Coupled Radio Frequency Plasma. J. Phys. D: Appl. Phys., 33:2154–2162

    Article  CAS  Google Scholar 

  13. A. Vardelle, P. Fauchais, B. Dussoubs, N. Themelis 1998 Heat Generation and Particle Injection in a Thermal Plasma Torch. Plasma Chem. Plasma Process. 18:551–574

    Article  CAS  Google Scholar 

  14. J. Fazilleau, C. Delbos, V. Rat, J.F. Coudert, P. Fauchais, B. Pateyron 2006 Phenomena Involved in Suspension Plasma Spraying. Plasma Chem. Plasma Process. 26:371–391

    Article  CAS  Google Scholar 

  15. Y. Shan, J. Mostaghimi 2003 Numerical Simulation of Aerosol Droplets Desolvation in a Radio Frequency Inductively Coupled Plasma. Spectrochim. Acta, Part B 58:1959–1977

    Article  CAS  Google Scholar 

  16. Y. Shan, J. Mostaghimi 2005 Modeling Dense Liquid Sprays in Radio Frequency Inductively Coupled Plasmas. Plasma Chem. Plasma Process. 25:193–214

    Article  CAS  Google Scholar 

  17. H.-P. Li, X. Chen 2002 Three-dimensional Modeling of the Turbulent Plasma Jet Impinging upon a Flat Plate and with Transverse Particle and Carrier-gas Injection. Plasma Chem. Plasma Process. 22:27–58

    Article  Google Scholar 

  18. K. Ramachandran, T. Sato, H. Nishiyama 2003 3D Modeling of Evaporation of Water Injected into a Plasma Jet. Int. J. Heat Mass Transfer 46:1653–1663

    Article  CAS  Google Scholar 

  19. K. Ramachandran, N. Kikukawa, H. Nishiyama 2003 3D Modeling of Plasma–particle Interactions in a Plasma Jet under Dense Loading Conditions. Thin Solid Films 435:298–306

    Article  CAS  Google Scholar 

  20. A. Ozturk, B.M. Cetegen 2005 Modeling of Axially and Transversely Injected Precursor Droplets into a Plasma Environment. International Journal of Heat and Mass Transfer 48:4367–4383

    Article  CAS  Google Scholar 

  21. S.A. Morsi, A.J. Alexander 1972 An Investigation of Particle Trajectories in Two-phase Flow Systems. J. Fluid Mech. 55:193–208

    Article  Google Scholar 

  22. Kuo K.K.Y. 1986 Principles of Combustion. John Wiley and Sons, New York

    Google Scholar 

  23. Patankar S.V. 1980 Numerical Fluid Flow and Heat Transfer. McGraw–Hill, New York

    Google Scholar 

  24. M. Jankovic, J. Mostaghimi, 1998 Thermally Induced Measurement Error by a Water-Cooled Enthalpy. Plasma Chem. Plasma Proces. 18:53–71

    Article  CAS  Google Scholar 

  25. L. Petruzzi, S. Cocchi, F. Fineschi 2003 A Global Thermo-electrochemical Model for SOFC Systems Design and Engineering. J. Power Sources 118:96–107

    Article  CAS  Google Scholar 

  26. L. Xie, E.H. Jordan, N.P. Padture, M. Gell 2004 Phase and Microstructural Stability of Solution Precursor Plasma Sprayed Thermal Barrier Coatings. Mater. Sci. Eng. A 381:189–195

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the NSERC of Canada, the National Natural Science Foundation of China (Project 50706027), and the Shanghai Municipal Education Commission (Project 05EZ16) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanguang Shan.

Additional information

This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shan, Y., Coyle, T. & Mostaghimi, J. 3D Modeling of Transport Phenomena and the Injection of the Solution Droplets in the Solution Precursor Plasma Spraying. J Therm Spray Tech 16, 736–743 (2007). https://doi.org/10.1007/s11666-007-9101-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-007-9101-0

Keywords

Navigation