Skip to main content
Log in

Special Diagram for Hydrogen Effect Evaluation on Mechanical Characterizations of Pipeline Steel

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The derived diagram defines three main ranges of hydrogen concentration in the metal, which have their own specific mechanisms of hydrogen influence on the characteristics of strength and ductility of the pipeline steel. It has been demonstrated that the nature of the hydrogen effect mechanism depends on the ratio of diffusible \(C_{{{\text{H}}\left( {{\text{dif}}} \right)}}\) and residual (trapped) hydrogen \(C_{{{\text{H}}\left( {{\text{res}}} \right)}}\) in the steel. A specific effect has been found, namely: at the hydrogen concentration \(C_{{\text{H}}} \cong 0.01{\text{-}}0.2\;{\text{ppm}}\) where all hydrogen is practically diffusible, the plastic deformation of the steel is facilitated, i.e., the deforming of the material takes place more easily. At the concentration range \(C_{{\text{H}}} \cong 0.8{\text{-}}10\;{\text{ppm}}\), where the trapped hydrogen prevails, the mechanism of hydrogen embrittlement of the steel is completely dominated. Therefore, the hydrogen concentration range beginning from \(C_{{\text{H}}} \cong 0.8\;{\text{ppm}}\) can be considered as critical. The range of values of hydrogen concentration in the metal \(C_{{\text{H}}} \cong 0.2{\text{-}}0.8\;{\text{ppm}}\) is a transition zone where the simultaneous coexistence of these two mechanisms is possible. The constructed diagram can be applied for the interpretation of the inspection results of long-term operated pipelines, and also for the choice of materials for the construction of new networks for hydrogen transportation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G. Mulder, J. Hetland, and G. Lenaers, Towards a Sustainable Hydrogen Economy: Hydrogen Pathways and Infrastructure, Int. J. Hydrog. Energy, 2007, 32, p 1324-1331. https://doi.org/10.1016/j.ijhydene.2006.10.012

    Article  CAS  Google Scholar 

  2. I. Dincer and C. Acar, Review and Evaluation of Hydrogen Production Methods for Better Sustainability, Int. J. Hydrog. Energy, 2014, 40, p 11094-11111. https://doi.org/10.1016/j.ijhydene.2014.12.035

    Article  CAS  Google Scholar 

  3. F. Sorgulu and I. Dincer, A Renewable Source Based Hydrogen Energy System for Residential Applications, Int. J. Hydrog. Energy, 2018, 43, p 5842-5851. https://doi.org/10.1016/j.ijhydene.2017.10.101

    Article  CAS  Google Scholar 

  4. P. Nikolaidis and A. Poullikkas, A Comparative Overview of Hydrogen Production Processes, Renew. Sustain. Energy Rev., 2017, 67, p 597-611. https://doi.org/10.1016/j.rser.2016.09.044

    Article  CAS  Google Scholar 

  5. S. Sharma and S.K. Ghoshal, Hydrogen the Future Transportation Fuel: From Production to Applications, Renew. Sustain. Energy Rev., 2015, 43, p 1151-1158. https://doi.org/10.1016/j.rser.2014.11.093

    Article  CAS  Google Scholar 

  6. J. Kurtz, S. Sprik, and T.H. Bradley, Review of Transportation Hydrogen Infrastructure Performance and Reliability, Int. J. Hydrog. Energy, 2019, 44, p 12010-12023. https://doi.org/10.1016/j.ijhydene.2019.03.027

    Article  CAS  Google Scholar 

  7. J. Capelle, J. Gilgert, I. Dmytrakh, and G. Pluvinage, Sensitivity of Pipelines with Steel API X52 to Hydrogen Embrittlement, Int. J. Hydrog. Energy, 2008, 33, p 7630-7641. https://doi.org/10.1016/j.ijhydene.2008.09.020

    Article  CAS  Google Scholar 

  8. G. Pluvinage, Mechanical Properties of a Wide Range of Pipe Steels Under Influence of Pure Hydrogen or Hydrogen Blended with Natural Gas, Int. J. Press. Vessel. Pip., 2021, 190, p 104293. https://doi.org/10.1016/j.ijpvp.2020.104293

    Article  CAS  Google Scholar 

  9. G. Pluvinage, J. Capelle, and M.H. Meliani, Pipe Networks Transporting Hydrogen Pure or Blended with Natural Gas, Design and Maintenance, Eng. Fail. Anal., 2019, 106, p 104164. https://doi.org/10.1016/j.engfailanal.2019.104164

    Article  CAS  Google Scholar 

  10. G. Pluvinage and J. Capelle, Design and maintenance of pipe networks transporting hydrogen pure or blended with natural gas, Pipeline Sci. Technol., 2019, 3, p 30-45. https://doi.org/10.28999/2514-541x-2019-3-1-30-45

    Article  Google Scholar 

  11. ASME B13.12-2019 Hydrogen Piping and Pipelines, ASME, 2020.

  12. C.S. Marchi, B.P. Somerday, K.A. Nibur, D.G. Stalheim, T. Boggess, S. Jansto, Fracture and fatigue of commercial grade api pipeline steels in gaseous hydrogen, In: American Society of Mechanical Engineers, Pressure Vessels and Piping Division, 2010: pp. 939-948. https://doi.org/10.1115/PVP2010-25825

  13. B.P. Somerday and P. Sofronis, International Hydrogen Conference (IHC 2012), ASME Press, 2014. https://doi.org/10.1115/1.860298

    Book  Google Scholar 

  14. Z.F. Chen, W.P. Chu, H.J. Wang, Y. Li, W. Wang, W.M. Meng, and Y.X. Li, Structural Integrity Assessment of Hydrogen-Mixed Natural Gas Pipelines Based on a New Multi-Parameter Failure Criterion, Ocean Eng., 2022, 247, p 110731. https://doi.org/10.1016/j.oceaneng.2022.110731

    Article  Google Scholar 

  15. Z. Chen, Y. Chen, W. Wang, K. Lu, H. Yang, and W. Zhu, Failure Pressure Analysis of Hydrogen Storage Pipeline Under Low Temperature and High Pressure, Int. J. Hydrog. Energy, 2020, 45, p 23142-23150. https://doi.org/10.1016/j.ijhydene.2020.06.129

    Article  CAS  Google Scholar 

  16. B. Keshtegar and M.E.A.B. Seghier, Modified Response Surface Method Basis Harmony Search to Predict the Burst Pressure of Corroded Pipelines, Eng. Fail. Anal., 2018, 89, p 177-199. https://doi.org/10.1016/j.engfailanal.2018.02.016

    Article  Google Scholar 

  17. Z. Hafsi, S. Elaoud, and M. Mishra, A Computational Modelling of Natural Gas Flow in Looped Network: Effect of Upstream Hydrogen Injection on the Structural Integrity of Gas Pipelines, J. Nat. Gas Sci. Eng., 2019, 64, p 107-117. https://doi.org/10.1016/j.jngse.2019.01.021

    Article  CAS  Google Scholar 

  18. B. Ozdirik, K. Baert, T. Depover, J. Vereecken, K. Verbeken, H. Terryn, and I. De Graeve, Development of an Electrochemical Procedure for Monitoring Hydrogen Sorption/Desorption in Steel, J. Electrochem. Soc., 2017, 164, p C747-C757. https://doi.org/10.1149/2.0521713jes

    Article  CAS  Google Scholar 

  19. M. Xie and Z. Tian, A Review on Pipeline Integrity Management Utilizing In-Line Inspection Data, Eng. Fail. Anal., 2018, 92, p 222-239. https://doi.org/10.1016/j.engfailanal.2018.05.010

    Article  Google Scholar 

  20. F. Caleyo, L. Alfonso, J.H. Espina-Hernández, and J.M. Hallen, Criteria for Performance Assessment and Calibration of in-Line Inspections of Oil and Gas Pipelines, Meas. Sci. Technol., 2007, 18, p 1787-1799. https://doi.org/10.1088/0957-0233/18/7/001

    Article  CAS  Google Scholar 

  21. O. Barrera, D. Bombac, Y. Chen, T.D. Daff, E. Galindo-Nava, P. Gong, D. Haley, R. Horton, I. Katzarov, J.R. Kermode, C. Liverani, M. Stopher, and F. Sweeney, Understanding and Mitigating Hydrogen Embrittlement of Steels: A Review of Experimental, Modelling and Design Progress from Atomistic to Continuum, J. Mater. Sci., 2018, 53, p 6251-6290. https://doi.org/10.1007/s10853-017-1978-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Y. Murakami, T. Kanezaki, and Y. Mine, Hydrogen Effect Against Hydrogen Embrittlement, Metall, Mater. Trans. A Phys. Metall. Mater. Sci., 2010, 41, p 2548-2562. https://doi.org/10.1007/s11661-010-0275-6

    Article  CAS  Google Scholar 

  23. I.M. Dmytrakh, R.L. Leshchak, and A.M. Syrotyuk, Effect of Hydrogen Concentration on Strain Behaviour of Pipeline Steel, Int. J. Hydrog. Energy, 2015, 40, p 4011-4018. https://doi.org/10.1016/j.ijhydene.2015.01.094

    Article  CAS  Google Scholar 

  24. I. Dmytrakh, A. Syrotyuk, and R. Leshchak, Specific Mechanism of Hydrogen Influence on Deformability and Fracture of Low-Alloyed Pipeline Steel, Proc. Struct. Integr., 2022, 36, p 298-305. https://doi.org/10.1016/j.prostr.2022.01.038

    Article  Google Scholar 

  25. LECO DH603. Manual, LECO Corporation, 2019

  26. ZEISS, Scanning Electron Microscope ZEISS SIGMA 300, Carl Zeiss SMT Ltd, Cambridge (England), n.d. https://zeiss-solutions.ru/en/equipment/mikroskopiya/electron-microscopy/zeiss-sigma-300-scanning-electron-microscope/

  27. R.Y. Kosarevych, O.Z. Student, L.M. Svirs’ka, B.P. Rusyn, and H.M. Nykyforchyn, Computer Analysis of Characteristic Elements of Fractographic Images, Mater. Sci., 2013, 48, p 474-481. https://doi.org/10.1007/s11003-013-9527-0

    Article  Google Scholar 

  28. R.J. Kosarevych, B.P. Rusyn, V.V. Korniy, and T.I. Kerod, Image Segmentation Based on the Evaluation of the Tendency of Image Elements to form Clusters with the Help of Point Field Characteristics, Cybern. Syst. Anal., 2015, 51, p 704-713. https://doi.org/10.1007/s10559-015-9762-5

    Article  Google Scholar 

  29. Laue method. in Dictionary of Gems and Gemology, ed. by Manutchehr-Danai M., (Springer, Berlin, Heidelberg 2009). https://doi.org/10.1007/978-3-540-72816-0_12847

  30. S.P. Lynch, Mechanisms of hydrogen assisted cracking: a review, in: R.H.J. N.R. Moody, A.W. Thompson, R.E. Ricker, G.W. Was (Ed.), Hydrogen Effects on Material Behavior and Corrosion Deformation Interactions: Proceedings of the International Conference on Hydrogen Effects on. Material Behavior and Corrosion Deformation Interactions, 2003: pp. 449-466

  31. K.E. Nygren, A. Nagao, S. Wang, P. Sofronis, and I.M. Robertson, Influence of Internal hydrogen Content on the Evolved Microstructure Beneath Fatigue Striations in 316L Austenitic Stainless Steel, Acta Mater., 2021, 213, p 116957. https://doi.org/10.1016/j.actamat.2021.116957

    Article  CAS  Google Scholar 

  32. M. Wasim, M.B. Djukic, and T.D. Ngo, Influence of Hydrogen-Enhanced Plasticity and Decohesion Mechanisms of Hydrogen Embrittlement on the Fracture Resistance of Steel, Eng. Fail. Anal., 2021, 123, p 105312. https://doi.org/10.1016/j.engfailanal.2021.105312

    Article  CAS  Google Scholar 

  33. A. Tehranchi and W.A. Curtin, The Role of Atomistic Simulations in Probing Hydrogen Effects on Plasticity and Embrittlement in Metals, Eng. Fract. Mech., 2019, 216, p 106502. https://doi.org/10.1016/j.engfracmech.2019.106502

    Article  Google Scholar 

  34. M. Isfandbod and E. Martínez-Pañeda, A Mechanism-Based Multi-Trap Phase Field Model for Hydrogen Assisted Fracture, Int. J. Plast., 2021, 144, p 103044. https://doi.org/10.1016/j.ijplas.2021.103044

    Article  CAS  Google Scholar 

  35. M.B. Djukic, V. Sijacki Zeravcic, G.M. Bakic, A. Sedmak, and B. Rajicic, Hydrogen Damage of Steels: A Case Study and Hydrogen Embrittlement Model, Eng. Fail. Anal., 2015, 58, p 485-498. https://doi.org/10.1016/j.engfailanal.2015.05.017

    Article  CAS  Google Scholar 

  36. V. Venegas, F. Caleyo, J.L. González, T. Baudin, J.M. Hallen, and R. Penelle, EBSD study Of Hydrogen-Induced Cracking in API-5L-X46 Pipeline Steel, Scr. Mater., 2005, 52, p 147-152. https://doi.org/10.1016/j.scriptamat.2004.09.015

    Article  CAS  Google Scholar 

  37. Degradation Assessment and Failure Prevention of Pipeline Systems, ed. by G. Bolzon, G. Gabetta, H. Nykyforchyn. Lecture Notes in Civil Engineering (Springer Nature 102, 2021)

  38. M. Stashchuk and M. Dorosh, Analytical evaluation of hydrogen induced stress in metal, Int. J. Hydrog. Energy, 2017, 42, p 6394-6400. https://doi.org/10.1016/j.ijhydene.2017.01.022

    Article  CAS  Google Scholar 

  39. A. Laureys, R. Depraetere, M. Cauwels, T. Depover, S. Hertelé, and K. Verbeken, Use of Existing Steel Pipeline Infrastructure for Gaseous Hydrogen Storage and Transport: A Review of Factors Affecting Hydrogen Induced Degradation, J. Nat. Gas Sci. Eng., 2022, 101, p 104534. https://doi.org/10.1016/j.jngse.2022.104534

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The presented study was financially supported by the National Research Foundation of Ukraine (Project Number: 2020.02/0049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Dmytrakh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmytrakh, I.M., Syrotyuk, A.M. & Leshchak, R.L. Special Diagram for Hydrogen Effect Evaluation on Mechanical Characterizations of Pipeline Steel. J. of Materi Eng and Perform 33, 3441–3454 (2024). https://doi.org/10.1007/s11665-023-08215-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08215-7

Keywords

Navigation