Skip to main content

Impact of Hydrogen Embrittlement in Pipeline Structures—A Critical Review

  • Conference paper
  • First Online:
Tailored Functional Materials

Part of the book series: Springer Proceedings in Materials ((SPM,volume 15))

  • 640 Accesses

Abstract

Steel structures used in oil and gas industries suffer many catastrophic failures due to hydrogen evolution, which originates from corrosion processes and cathodic protection in their service settings. The use of ferrous steel to construct these structures diminishes their structural stability. Offshore pipeline systems include moisture and molecular water reduction caused by cathodic protection. Synergistic hydrogen concentration and stress create a situation of hydrogen embrittlement in susceptible steels, leading to very brittle circumstances. The present paper extensively discusses the different sources of hydrogen attack and the associated failure mechanisms. The most recent work done by researchers has been reviewed; widely accepted techniques to assess the impact of hydrogen on steel pipelines are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hardie D, Charles EA, Lopez AH (2006) Hydrogen embrittlement of high-strength pipeline steels. Corros Sci 48(12):4378–4385

    Article  CAS  Google Scholar 

  2. Lynch S (2012) Hydrogen embrittlement phenomena and mechanisms. Corros Rev 30(3–4):105–123

    CAS  Google Scholar 

  3. Troiano AR (1959) Delayed failure of high strength steels. Corrosion 15(4):57–62

    Article  Google Scholar 

  4. Xing X, Zhang H, Cui G, Liu J, Li Z (2019) Hydrogen inhibited phase transition near crack tip–An atomistic mechanism of hydrogen embrittlement. Int J Hydrogen Energy 44(31):17146–17153

    Article  CAS  Google Scholar 

  5. Tian H, Xin J, Li Y, Wang X, Cui Z (2019) Combined effect of cathodic potential and sulfur species on calcareous deposition, hydrogen permeation, and hydrogen embrittlement of a low carbon bainite steel in artificial seawater. Corros Sci 158:108089

    Article  CAS  Google Scholar 

  6. Cerniauskas S, Junco AJC, Grube T, Robinius M, Stolten D (2020) Options of natural gas pipeline reassignment for hydrogen: cost assessment for a Germany case study. Int J Hydrogen Energy 45(21):12095–12107

    Article  CAS  Google Scholar 

  7. Zhou D, Li T, Huang D, Wu Y, Huang Z, Xiao W, Wang Q, Wang X (2021) The experiment study to assess the impact of hydrogen blended natural gas on the tensile properties and damage mechanism of X80 pipeline steel. Int J Hydrogen Energy 46(10):7402–7414

    Article  CAS  Google Scholar 

  8. Trautmann A, Mori G, Oberndorfer M, Bauer S, Holzer C, Dittmann C (2020) Hydrogen uptake and embrittlement of carbon steels in various environments. Materials 13(16):3604

    Article  CAS  Google Scholar 

  9. Villalobos JC, Del-Pozo A, Mayen J, Serna S, Campillo B (2020) Hydrogen embrittlement suscetibility on X-120 microalloyed steel as function of tempering temperature. Int J Hydrogen Energy 45(15):9137–9148

    Article  CAS  Google Scholar 

  10. Shin HS, Bae KO, Baek UB, Nahm SH (2019) Establishment of an in-situ small punch test method for characterizing hydrogen embrittlement behaviors under hydrogen gas environments and new influencing factor. Int J Hydrogen Energy 44(41):23472–23483

    Article  CAS  Google Scholar 

  11. Silva SC, Silva AB, Gomes JP (2021) Hydrogen embrittlement of API 5L X65 pipeline steel in CO2 containing low H2S concentration environment. Eng Fail Anal 120:105081

    Article  CAS  Google Scholar 

  12. Jiang T, Zhong J, Zhang X, Wang W, Guan K (2020) Hydrogen embrittlement induced fracture of 17–4 PH stainless steel valve stem. Eng Fail Anal 113:104576

    Article  CAS  Google Scholar 

  13. Singh V, Singh R, Arora KS, Mahajan DK (2019) Hydrogen induced blister cracking and mechanical failure in X65 pipeline steels. Int J Hydrogen Energy 44(39):22039–22049

    Article  CAS  Google Scholar 

  14. Chen X, Ma L, Zhou C, Hong Y, Tao H, Zheng J, Zhang L (2019) Improved resistance to hydrogen environment embrittlement of warm-deformed 304 austenitic stainless steel in high-pressure hydrogen atmosphere. Corros Sci 148:159–170

    Article  CAS  Google Scholar 

  15. Martin ML, Connolly MJ, DelRio FW, Slifka AJ (2020) Hydrogen embrittlement in ferritic steels. Appl Phys Rev 7(4):041301

    Article  CAS  Google Scholar 

  16. Gobbi G, Colombo C, Miccoli S, Vergani L (2018) A weakly coupled implementation of hydrogen embrittlement in FE analysis. Finite Elem Anal Des 141:17–25

    Article  Google Scholar 

  17. Wang Y, Hu S, Li Y, Cheng G (2019) Improved hydrogen embrittlement resistance after quenching–tempering treatment for a Cr–Mo-V high strength steel. Int J Hydrogen Energy 44(54):29017–29026

    Article  CAS  Google Scholar 

  18. Titov AI, Lun-Fu AV, Gayvaronskiy AV, Bubenchikov MA, Bubenchikov AM, Lider AM, Syrtanov MS, Kudiiarov VN (2019) Hydrogen accumulation and distribution in pipeline steel in intensified corrosion conditions. Materials 12(9):1409

    Article  CAS  Google Scholar 

  19. Wasim M, Djukic MB (2020) Hydrogen embrittlement of low carbon structural steel at macro-, micro-and nano-levels. Int J Hydrogen Energy 45(3):2145–2156

    Article  CAS  Google Scholar 

  20. Álvarez G, Zafra A, Belzunce FJ, Rodríguez C (2021) Hydrogen embrittlement testing procedure for the analysis of structural steels with small punch tests using notched specimens. Eng Fract Mech 253:107906

    Article  Google Scholar 

  21. Boukortt H, Amara M, Meliani MH, Bouledroua O, Muthanna BGN, Suleiman RK, Sorour AA, Pluvinage G (2018) Hydrogen embrittlement effect on the structural integrity of API 5L X52 steel pipeline. Int J Hydrogen Energy 43(42):19615–19624

    Article  CAS  Google Scholar 

  22. Álvarez G, Peral LB, Rodríguez C, García TE, Belzunce FJ (2019) Hydrogen embrittlement of structural steels: effect of the displacement rate on the fracture toughness of high-pressure hydrogen pre-charged samples. Int J Hydrogen Energy 44(29):15634–15643

    Article  CAS  Google Scholar 

  23. Wasim M, Djukic MB, Ngo TD (2021) Influence of hydrogen-enhanced plasticity and decohesion mechanisms of hydrogen embrittlement on the fracture resistance of steel. Eng Fail Anal 123:105312

    Article  CAS  Google Scholar 

  24. Bouledroua O, Hafsi Z, Djukic MB, Elaoud S (2020) The synergistic effects of hydrogen embrittlement and transient gas flow conditions on integrity assessment of a precracked steel pipeline. Int J Hydrogen Energy 45(35):18010–18020

    Article  CAS  Google Scholar 

  25. Nguyen TT, Park JS, Kim WS, Nahm SH, Beak UB (2020) Environment hydrogen embrittlement of pipeline steel X70 under various gas mixture conditions with in situ small punch tests. Mater Sci Eng, A 781:139114

    Article  CAS  Google Scholar 

  26. Ohaeri E, Eduok U, Szpunar J (2019) Relationship between microstructural features in pipeline steel and hydrogen assisted degradation. Eng Fail Anal 96:496–507

    Article  CAS  Google Scholar 

  27. Xing X, Zhou J, Zhang S, Zhang H, Li Z, Li Z (2019) Quantification of temperature dependence of hydrogen embrittlement in pipeline steel. Materials 12(4):585

    Article  CAS  Google Scholar 

  28. Rudomilova D, Prošek T, Luckeneder G (2018) Techniques for investigation of hydrogen embrittlement of advanced high strength steels. Corros Rev 36(5):413–434

    Article  CAS  Google Scholar 

  29. Dwivedi SK, Vishwakarma M (2018) Hydrogen embrittlement in different materials: a review. Int J Hydrogen Energy 43(46):21603–21616

    Article  CAS  Google Scholar 

  30. Chida T, Hagihara Y, Akiyama E, Iwanaga K, Takagi S, Ohishi H et al (2014) Comparison of constant load, SSRT, and CSRT methods for hydrogen embrittlement evaluation using round bar specimens of high strength steels. Tetsu-to-Hagane 100(10):1298–1305

    Google Scholar 

  31. Hagihara Y (2012) Evaluation of delayed fracture characteristics of high-strength bolt steels by CSRT. ISIJ Int 52(2):292–297

    Article  CAS  Google Scholar 

  32. Takagi S, Toji Y, Yoshino M, Hasegawa K (2012) Hydrogen embrittlement resistance evaluation of ultra high strength steel sheets for automobiles. ISIJ Int 52(2):316–322

    Article  CAS  Google Scholar 

  33. Scharf R, Muhr A, Luckeneder G, Larour P, Mraczek K, Rehrl J et al (2016) Hydrogen embrittlement of DP‐1000 flat steel sheet: influence of mechanical properties, specimen geometry, pre‐damaging and electrolytically zinc galvanizing. Mater Corros 67(3):239–250

    Google Scholar 

  34. Chida T, Hagihara Y, Akiyama E, Iwanaga K, Takagi S, Hayakawa M et al (2016) Comparison of constant load, SSRT and CSRT methods for hydrogen embrittlement evaluation using round bar specimens of high strength steels. Isij Int 56(7):1268–1275

    Google Scholar 

  35. Rehrl J, Mraczek K, Pichler A, Werner E (2014) The impact of Nb, Ti, Zr, B, V, and Mo on the hydrogen diffusion in four different AHSS/UHSS microstructures. Steel Res Int 85(3):336–346

    Google Scholar 

  36. Wang M, Akiyama E, Tsuzaki K (2005) Crosshead speed dependence of the notch tensile strength of a high strength steel in the presence of hydrogen. Scripta Mater 53(6):713–718

    Article  CAS  Google Scholar 

  37. Wang MQ, Akiyama E, Tsuzaki K (2006) Fracture criterion for hydrogen embrittlement of high strength steel. Mater Sci Technol 22(2):167–172

    Article  CAS  Google Scholar 

  38. Wang M, Akiyama E, Tsuzaki K (2007) Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test. Corros Sci 49(11):4081–4097

    Article  CAS  Google Scholar 

  39. Ćwiek J (2010) Prevention methods against hydrogen degradation of steel. J Achievements Mater Manuf Eng 43(1):214–221

    Google Scholar 

  40. Hollenberg GW, Simonen EP, Kalinin G, Terlain A (1995) Tritium/hydrogen barrier development. Fusion Eng Des 28:190–208

    Article  CAS  Google Scholar 

  41. Takata K (1963) Japanese patents SHO-35 18260 (1960) and SHO-38 20703

    Google Scholar 

  42. Fannin ER, Muehlberger DE (1978) Ivadizer applied aluminum coating improves corrosion protection of aircraft. McDonnell Aircraft Company, p 26

    Google Scholar 

  43. Chatterjee SS, Ateya BG, Pickering HW (1978) Effect of electrodeposited metals on the permeation of hydrogen through iron membranes. Metall Trans A 9(3):389–395

    Article  Google Scholar 

  44. Perng TP, Johnson MJ, Altstetter CJ (1988) Hydrogen permeation through coated and uncoated WASPALOY. Metall Trans A 19(5):1187–1192

    Article  Google Scholar 

  45. Chandler WT, Walter RJ, Moeller CE, Carpenter HW (1978) Effect of high-pressure H on electrodeposited Ni. Plat Surf Finish 65(5):63e70

    Google Scholar 

  46. Robinson SL, SL R, WA S, AD A (1979) The role of brush plating in future hydrogen and transmission systems

    Google Scholar 

  47. Begeal DR (1975) The permeation and diffusion of hydrogen and deuterium through Rodar, tin—coated Rodar, and solder—coated Rodar. J Vac Sci Technol 12(1):405–409

    Article  CAS  Google Scholar 

  48. Freiman L, Titov V (1956) The inhibition of diffusion of hydrogen through iron and steel by surface films of some metals. Zh Fiz Khim 30:882

    CAS  Google Scholar 

  49. Levchuk D, Koch F, Maier H, Bolt H (2004) Deuterium permeation through Eurofer and α-alumina coated Eurofer. J Nucl Mater 328(2–3):103–106

    Article  CAS  Google Scholar 

  50. Ensinger W, Wolf GK (1989) Protection against hydrogen embrittlement by ion beam mixing. Nucl Instrum Methods Phys Res, Sect B 39(1–4):552–555

    Article  Google Scholar 

  51. Dos Santos DS, De Miranda PV (1997) J Mater Sci 32:6311e5

    Google Scholar 

  52. Soudani M, Hadj Meliani M, El-Miloudi K, Bouledroua O, Fares C, Benghalia MA et al (2018) Efficiency of green inhibitors against hydrogen embrittlement on mechanical properties of pipe steel API 5L X52 in hydrochloric acid medium. J Bio- Tribo-Corros 4(3):1–11

    Google Scholar 

  53. Nam TH, Lee JH, Choi SR, Yoo JB, Kim JG (2014) Graphene coating as a protective barrier against hydrogen embrittlement. Int J Hydrogen Energy 39(22):11810–11817

    Article  CAS  Google Scholar 

  54. Wang SS, Chai JK, Shui YM, Liang JK (1981) Cd–Ti electrodeposits from a noncyanide bath. Plat Surf Finish 68(12):62–64

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adarsh Kumar Arya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arya, A.K., Gautam, S., Yadav, S. (2022). Impact of Hydrogen Embrittlement in Pipeline Structures—A Critical Review. In: Mukherjee, K., Layek, R.K., De, D. (eds) Tailored Functional Materials. Springer Proceedings in Materials, vol 15. Springer, Singapore. https://doi.org/10.1007/978-981-19-2572-6_31

Download citation

Publish with us

Policies and ethics