Skip to main content

Advertisement

Log in

Thermal Performance of Lauric Acid/Bentonite/Carbon Nanofiber Composite Phase-Change Materials for Heat Storage

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Composite phase-change materials (CPCMs) with good shape stability were prepared using infiltration method. Lauric acid (LA) was acted as a phase-change material (PCM). Bentonite (BT) was used as a porous material to prevent melted LA from leakage. PCM2 is used to determine the maximum amount of LA that BT can absorb. Carbon nanofibers (CNFs) were added to improve thermal conductivity of CPCM. Chemical composition of CPCM was analyzed by Fourier transformation infrared spectroscope (FTIR). Crystal structure of CPCM was determined by x-ray diffractometer (XRD). Phase-change property of CPCM was measured by differential scanning calorimeter. The results indicate that the CPCM has latent heat of 96.71 kJ/kg at melting temperature of 42.49 °C. Thermal stability of CPCM was tested using thermogravimetric analyzer. Thermal conductivity of the CPCM also increases as the CNF content increases. As CNF content is 5 wt.%, thermal conductivity of CPCM3 increases to two times that of PCM2. Hence, thermal conductivity of CPCM3 has been considerably improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

BT:

Bentonite

CNF:

Carbon nanofibers

CPCM:

Composite phase-change materials

DSC:

Differential scanning calorimeter

FT-IR:

Fourier transformation infrared spectroscope

LA:

Lauric acid

PCM:

Phase-change materials

SEM:

Scanning electronic microscope

TGA:

Thermogravimetric analyzer

XRD:

X-ray diffractometer

References

  1. S. Kalisz, K. Kibort, J. Mioduska, M. Lieder, and A. Małachowska, Waste Management in the Mining Industry of Metals Ores, Coal, Oil and Natural Gas—A Review, J. Environ. Manage., 2022, 304, p 114239.

    Article  CAS  Google Scholar 

  2. P. Amoatey, A. Al-Hinai, A. Al-Mamun, and M.S. Baawain, A Review of Recent Renewable Energy Status and Potentials in Oman, Sustainable Energy Technol. Assess., 2022, 51, p 101919.

    Article  Google Scholar 

  3. J. Elio, P. Phelan, R. Villalobos, and R.J. Milcarek, A Review of Energy Storage Technologies for demand-Side Management in Industrial Facilities, J. Clean. Prod., 2021, 307, p 127322.

    Article  CAS  Google Scholar 

  4. N. Wang, R. Shen, Z. Wen, and D.D. Clercq, Life Cycle Energy Efficiency Evaluation for Coal Development and Utilization, Energy, 2019, 179, p 1–11.

    Article  Google Scholar 

  5. M. Santamouris and K. Vasilakopoulou, Present and Future Energy Consumption of Buildings: Challenges and Opportunities Towards Decarbonisation, e-Prime-Adv. Elect. Eng. Electron. Energy, 2021, 1, p 100002.

    Article  Google Scholar 

  6. B. Li, L. You, M. Zheng, Y. Wang, and Z. Wang, Energy Consumption Pattern and Indoor Thermal Environment of Residential Building in Rural China, Energy and Built, Environment, 2020, 1, p 327–336.

    Google Scholar 

  7. V.V. Tyagi, K. Chopra, B. Kalidasan, A. Chauhan, U. Stritih, S. Anand, A.K. Pandey, A. Sari, and R. Kothari, Phase Change Material Based Advance Solar Thermal Energy Storage Systems for Building Heating and Cooling Applications: a Prospective Research Approach, Sustain. Energy Technol. Assess., 2021, 47, p 101318.

    Google Scholar 

  8. F. Hassan, F. Jamil, A. Hussain, H.M. Ali, M.M. Janjua, S. Khushnood, M. Farhan, K. Altaf, Z. Said, and C. Li, Recent Advancements in Latent Heat Phase Change Materials and Their applications for Thermal Energy storage and Buildings: A State of the Art Review, Sustain. Energy Technol. Assess., 2022, 49, p 101646.

    Google Scholar 

  9. W. Liu, Y. Bie, T. Xu, A. Cichon, G. Krolczyk, and Z. Li, Heat Transfer Enhancement of Latent Heat Thermal Energy Storage in Solar Heating System: A State-of-the-Art Review, J. Energy Storage, 2022, 46, p 103727.

    Article  Google Scholar 

  10. S. Lu, X. Zhai, J. Gao, and R. Wang, Performance Optimization and Experimental Analysis of A Novel Low-Temperature Latent Heat Thermal energy Storage Device, Energy, 2022, 239, p 122496.

    Article  Google Scholar 

  11. V.V. Tyagi, K. Chopra, R.K. Sharma, A.K. Pandey, S.K. Tyagi, M.S. Ahmad, A. Sarı, and R. Kothari, A Comprehensive Review on Phase Change Materials for Heat Storage Applications: Development Characterization, Thermal and Chemical Stability, Solar Energy Mater. Solar Cells, 2022, 234, p 111392.

    Article  CAS  Google Scholar 

  12. S.A. Mohamed, F.A. Al-Sulaiman, N.I. Ibrahim, Md.H. Zahir, A. Al-Ahmed, R. Saidur, B.S. Yılbaş, and A.Z. Sahin, A Review on Current Status and Challenges of Inorganic Phase Change Materials for Thermal Energy Storage Systems, Renew. Sustain. Energy Rev., 2017, 70, p 1072–1089.

    Article  CAS  Google Scholar 

  13. P. Singh, R.K. Sharma, A.K. Ansu, R. Goyal, A. Sari, and V.V. Tyagi, A Comprehensive Review on Development of Eutectic Organic Phase Change Materials and Their Composites for Low and Medium Range Thermal Energy Storage Applications, Sol. Energy Mater. Sol. Cells, 2021, 223, p 110955.

    Article  CAS  Google Scholar 

  14. Y. Lin, G. Alva, and G. Fang, Review on Thermal Performances and Applications of Thermal Energy Storage Systems with Inorganic Phase Change Materials, Energy, 2018, 165, p 685–708.

    Article  CAS  Google Scholar 

  15. H. Yan, H. Yang, J. Luo, N. Yin, Z. Tan, and Q. Shi, Thermodynamic Insights Into n-Alkanes Phase Change Materials for Thermal Energy Storage, Chin. Chem. Lett., 2021 https://doi.org/10.1016/j.cclet.2021.05.017

    Article  Google Scholar 

  16. A. Sari and A. Bicer, Thermal Energy Storage properties and Thermal Reliability of Some Fatty Acid Esters/Building Material Composites as Novel Form-Stable PCMs, Sol. Energy Mater. Sol. Cells, 2012, 101, p 114–122.

    Article  CAS  Google Scholar 

  17. S. Wang, Y. Xing, Z. Hao, J. Yin, X. Hou, and Z. Wang, Experimental Study on the Thermal Performance of PCMs Based Heat Sink Using Higher Alcohol/Graphite Foam, Appl. Therm. Eng., 2021, 198, p 117452.

    Article  CAS  Google Scholar 

  18. R.M. Saeed, J.P. Schlegel, C. Castano, and R. Sawafta, Venu Kuturu, Preparation and Thermal Performance of Methyl Palmitate and Lauric Acid Eutectic Mixture as Phase Change Material (PCM), J. Energy Storage, 2017, 13, p 418–424.

    Article  Google Scholar 

  19. R. Wen, X. Zhu, C. Yang, Z. Sun, L. Zhang, Y. Xu, J. Qiao, X. Wu, X. Min, and Z. Huang, A Novel Composite Phase Change Material from Lauric Acid Nano-Cu and Attapulgite: Preparation, Characterization and Thermal Conductivity Enhancement, J. Energy Storage, 2022, 46, p 103921.

    Article  Google Scholar 

  20. X. Liu, J. Tie, Z. Wang, Y. Xia, C. Wang, and S. Tie, Improved Thermal Conductivity and Stability of Na2SO4·10H2O PCMs System by Incorporation of Al/C Hybrid Nanoparticles, J. Market. Res., 2021, 12, p 982–988.

    CAS  Google Scholar 

  21. A. Yadav, A. Verma, A. Kumar, H. Dashmana, A. Kumar, P.K. Bhatnagar, and V.K. Jain, Recent Advances on Enhanced Thermal Conduction in Phase Change Materials Using Carbon Nanomaterials, J. Energy Storage, 2021, 43, p 103173.

    Article  Google Scholar 

  22. P.K.S. Rathore and S.K. Shukla, Improvement in Thermal Properties of PM/Expanded Vermiculite/Expanded Graphite Shape Stabilized Composite PCM for Building Energy Applications, Renew. Energy, 2021, 176, p 295–304.

    Article  CAS  Google Scholar 

  23. Y. Zhou, C. Li, H. Wu, and S. Guo, Construction of Hybrid Graphene Oxide/Graphene Nanoplates Shell in Paraffin Microencapsulated Phase Change Materials to Improve Thermal Conductivity for Thermal Energy Storage, Colloids Surf. A, 2020, 597, p 124780.

    Article  CAS  Google Scholar 

  24. A. Al-Ahmed, M.A.J. Mazumder, B. Salhi, A. Sari, M. Afzaal, and F.A. Al-Sulaiman, Effects of Carbon-Based Fillers on Thermal Properties of Fatty Acids and Their Eutectics as Phase Change Materials Used for Thermal Energy Storage: A Review, J. Energy Storage, 2021, 35, p 102329.

    Article  Google Scholar 

  25. X.B. Huang, X. Chen, A. Li, D. Atinafu, H.Y. Gao, W.J. Dong, and G. Wang, Shape-Stabilized Phase Change Materials Based on Porous Supports for Thermal Energy Storage Applications, Chem. Eng. J., 2019, 356, p 641–661.

    Article  CAS  Google Scholar 

  26. Z. Khan, Z.A. Khan, and P. Sewell, Heat Transfer Evaluation of Metal Oxides Based Nano-PCMs for Latent Heat Storage System Application, Int. J. Heat Mass Transf., 2019, 144, p 118619.

    Article  CAS  Google Scholar 

  27. C.Z. Liu, C.Y. Luo, T.T. Xu, P.Z. Lv, and Z.H. Rao, Experimental Study on the Thermal Performance of Capric Acid-Myristyl Alcohol/Expanded Perlite Composite Phase Change Materials for Thermal Energy Storage, Sol. Energy, 2019, 191, p 585–595.

    Article  CAS  Google Scholar 

  28. M. Aramesh and B. Shabani, Metal Foam-Phase Change Material Composites for Thermal Energy Storage: A Review of Performance Parameters, Renew. Sustain. Energy Rev., 2022, 155, p 111919.

    Article  CAS  Google Scholar 

  29. G. Torres-Flores, G.T. Nazende, and T.A. Emre, Preparation of Fenofibrate Loaded Eudragit L100 Nanoparticles by Nanoprecipitation Method, Mater. Today Proc., 2019, 13, p 428–435.

    Article  CAS  Google Scholar 

  30. H.M. Weingrill, K. Resch-Fauster, T. Lucyshyn, and C. Zauner, High-Density Polyethylene as Phase-Change Material: Long-Term Stability and Aging, Polym. Test., 2019, 76, p 433–442.

    Article  CAS  Google Scholar 

  31. R.M. Saeed, J.P. Schlegel, C. Castano, and R. Sawafta, Preparation and Enhanced Thermal Performance of Novel (solid to gel) Form-Stable Eutectic PCM Modified by Nano-Graphene Platelets, J. Energy Storage, 2018, 15, p 91–102.

    Article  Google Scholar 

  32. A. Sari, M. Ouikhalfan, H. Chehouani, G. Hekimoglu, A. Bicer, A. Al-Ahmed, F.A. Al-Sulaiman, and V.V. Tyagi, Form-Stabilized Polyethylene Glycol/Palygorskite Composite Phase Change Material: Thermal Energy Storage Properties, Cycling Stability, and Thermal Durability, Polym. Eng. Sci., 2020 https://doi.org/10.1002/pen.25346

    Article  Google Scholar 

  33. A. Sari, A. Karaipekli, and C. Alkan, Preparation, Characterization and thermal Properties of Lauric Acid/Expanded Perlite as Novel Form-Stable Composite Phase Change Material, Chem. Eng. J., 2009, 155, p 899–904.

    Article  CAS  Google Scholar 

  34. D. Mei, B. Zhang, R. Liu, Y. Zhang, and J. Liu, Preparation of Capric Acid/Halloysite Nanotube Composite as Form-Stable Phase Change Material for Thermal Energy Storage, Sol. Energy Mater. Sol. Cells, 2011, 95, p 2772–2777.

    Article  CAS  Google Scholar 

  35. M. Li, Z. Wu, H. Kao, and J. Tan, Experimental Investigation of Preparation and Thermal Performances of Paraffin/Bentonite Composite Phase Change Material, Energy Convers. Manage., 2011, 52, p 3275–3281.

    Article  CAS  Google Scholar 

  36. S. Song, L. Dong, Y. Zhang, S. Chen, Q. Li, Y. Guo, S. Deng, S. Si, and C. Xiong, Lauric Acid/Intercalated Kaolinite as Form-Stable Phase Change Material for Thermal Energy Storage, Energy, 2014, 76, p 385–389.

    Article  CAS  Google Scholar 

  37. A.K. Mishra, B.B. Lahiri, and J. Philip, Carbon Black Nano Particle Loaded Lauric Acid Based Form-Stable Phase Change Material with Enhanced Thermal Conductivity and Photo-Thermal Conversion for Thermal Energy Storage, Energy, 2020, 191, p 116572.

    Article  CAS  Google Scholar 

  38. K. Yuan, Y. Zhou, W. Sun, X. Fang, and Z. Zhang, A Polymer-Coated Calcium Chloride Hexahydrate/Expanded Graphite Composite Phase Change Material with Enhanced Thermal Reliability and Good Applicability, Compos. Sci. Technol., 2018, 156, p 78–86.

    Article  CAS  Google Scholar 

  39. Z. Liu, H. Wei, B. Tang, S. Xu, and Z. Shufen, Novel Light-Driven CF/PEG/SiO2 Composite Phase Change Materials with High Thermal Conductivity, Sol. Energy Mater. Sol. Cells, 2018, 174, p 538–544.

    Article  CAS  Google Scholar 

  40. A. Sari, A. Bicer, A. Al-Ahmed, F.A. Al-Sulaiman, Md.H. Zahir, and S.A. Mohamedb, Silica Fume/Capric Acid-Palmitic Acid Composite Phase change Material Doped with CNTs for Thermal Energy Storage, Sol. Energy Mater. Sol. Cells, 2018, 179, p 353–361.

    Article  CAS  Google Scholar 

  41. A. Sari, A. Bicer, F.A. Al-Sulaiman, A. Karaipekli, and V.V. Tyagi, Diatomite/CNTs/PEG Composite PCMs with Shape-Stabilized and improved Thermal Conductivity: Preparation and Thermal Energy Storage Properties, Energy Build., 2018, 164, p 166–175.

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (Grant no. 51676095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiyin Fang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wang, W. & Fang, G. Thermal Performance of Lauric Acid/Bentonite/Carbon Nanofiber Composite Phase-Change Materials for Heat Storage. J. of Materi Eng and Perform 33, 348–361 (2024). https://doi.org/10.1007/s11665-023-07964-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-07964-9

Keywords

Navigation