Skip to main content

Advertisement

Log in

Investigation of Fused Filament Fabrication-Based Manufacturing of ABS-Al Composite Structures: Prediction by Machine Learning and Optimization

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Additive manufacturing (AM) or fused filament fabrication (FFF) are used to fabricate innovative virgin/composite structures using thermoplastic polymers. FFF is one of the most fast-growing manufacturing processes of final products using polymer-based composites. This research uses acrylonitrile butadiene styrene (ABS) thermoplastic polymer as a matrix material to fabricate final-use products with aluminum (Al) metal spray reinforcement. To investigate the effect of Al spray reinforcement, three main input parameters; infill pattern (Triangle, line, and cubic), infill density (60, 80, and 100%), and the number of sprayed layers (2, 3, and 4) have been selected, and fractured strength have been studied using Taguchi L-9 orthogonal array. In addition, single objective, multi-objective, and prediction with machine learning (ML) have been performed on the samples’ flexural properties to select the best-optimized setting. Results of the study were supported with x-ray diffraction (XRD), optical and scanning electron microscope (SEM) fracture analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S.C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mülhaupt, Polymers for 3D Printing and Customized Additive Manufacturing, Chem. Rev., 2017, 117(15), p 10212–10290.

    Article  CAS  Google Scholar 

  2. D.W. Rosen, Computer-aided Design for Additive Manufacturing of Cellular Structures, Comput. Aided Des. Appl., 2007, 4(5), p 585–594.

    Article  Google Scholar 

  3. P. Wu, J. Wang, and X. Wang, A Critical Review of the Use of 3-D Printing in the Construction Industry, Autom. Constr., 2016, 68, p 21–31.

    Article  Google Scholar 

  4. A.N. Dickson, H.M. Abourayana, and D.P. Dowling, 3D Printing of Fibre-Reinforced Thermoplastic Composites Using Fused Filament Fabrication–A Review, Polymers, 2020, 12(10), p 2188.

    Article  CAS  Google Scholar 

  5. T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, and D. Hui, Additive Manufacturing (3D printing): A Review of Materials, Methods, Applications and Challenges, Compos. B Eng., 2018, 143, p 172–196.

    Article  CAS  Google Scholar 

  6. N. Shiode, 3D Urban Models: Recent Developments in the Digital Modelling of Urban Environments in Three-dimensions, Geo J., 2000, 52(3), p 263–269.

    Google Scholar 

  7. S. Pessoa, A.S. Guimarães, S.S. Lucas, and N. Simões, 3D Printing in the Construction Industry - A Systematic Review of the Thermal Performance in Buildings, Renew. Sustain. Energy Rev., 2021, 141, p 110794.

    Article  Google Scholar 

  8. S. Mohammad-Ebrahimi and L. Koh, Manufacturing sustainability: institutional Theory and Life Cycle Thinking, J. Clean. Prod., 2021, 298, p 126787.

    Article  CAS  Google Scholar 

  9. A.K. Mohanty, M. Misra, and L.T. Drzal, Sustainable Bio-composites from Renewable Resources: Opportunities and Challenges in the Green Materials World, J. Polym. Environ., 2002, 10(1), p 19–26.

    Article  CAS  Google Scholar 

  10. S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, and R. Kumar, Surface Modification of Inorganic Nanoparticles for Development Of Organic–organic Nanocomposites–A Review, Prog. Polym. Sci., 2013, 38(8), p 1232–1261.

    Article  CAS  Google Scholar 

  11. R. Siakeng, M. Jawaid, H. Ariffin, S.M. Sapuan, M. Asim, and N. Saba, Natural Fiber Reinforced Polylactic acid Composites: A Review, Polym. Compos., 2019, 40(2), p 446–463.

    Article  CAS  Google Scholar 

  12. P.B. Malafaya, G.A. Silva, and R.L. Reis, Natural-Origin Polymers as Carriers and Scaffolds for Biomolecules and Cell Delivery in Tissue Engineering Applications, Adv. Drug. Deliv. Rev., 2007, 59(4–5), p 207–233.

    Article  CAS  Google Scholar 

  13. R. Dunne, D. Desai, R. Sadiku, and J. Jayaramudu, A Review of Natural Fibres, Their Sustainability and Automotive Applications, J. Reinf. Plast. Compos., 2016, 35(13), p 1041–1050.

    Article  CAS  Google Scholar 

  14. K.G. Satyanarayana, G.G.C. Arizaga, and F. Wypych, Biodegradable Composites Based on Lignocellulosic Fibers–An Overview, Prog. Polym. Sci., 2009, 34(9), p 982–1021.

    Article  CAS  Google Scholar 

  15. S.V. Raut, A. Bongale, S. Kumar, and A. Bongale, Influence of Metal Powder Reinforced Polymer Composite on the Mechanical Properties of Injection Moulded Parts, AIP Conf. Proc., 2020, 2297(1), p 020024.

    Article  CAS  Google Scholar 

  16. J.C. Najmon, S. Raeisi, and A. Tovar, 2 - Review of additive manufacturing technologies and applications in the aerospace industry, Additive Manufacturing for the Aerospace Industryed. F. Froes, R. Boyer Ed., Elsevier, New York, 2019, p 7–31

    Chapter  Google Scholar 

  17. R. Ashima, A. Haleem, S. Bahl, M. Javaid, S. Kumar-Mahla, and S. Singh, Automation and Manufacturing of Smart Materials in Additive Manufacturing Technologies using Internet of Things Towards the Adoption of Industry 4.0, Mater. Today Proc., 2021, 45, p 5081–5088.

    Article  Google Scholar 

  18. V. Verma and A. Khvan, A short review on Al MMC with reinforcement addition effect on their mechanical and wear behavior, Advances in Composite Materials Developmented. IntechOpen, London, UK, 2019

    Google Scholar 

  19. M. Strano, K. Rane, F. Briatico-Vangosa, and L. Di-Landro, Extrusion of Metal Powder-polymer Mixtures: Melt Rheology and Process Stability, J. Mater. Proc. Technol., 2019, 273, p 116250.

    Article  CAS  Google Scholar 

  20. S. Zidi, A. Mihoub, S. Mian Qaisar, M. Krichen, and Q. Abu Al-Haija, Theft Detection Dataset for Benchmarking and Machine Learning Based Classification in a Smart Grid Environment, J. King Saud Univ. Comput. Inform. Sci., 2022 https://doi.org/10.1016/j.jksuci.2022.05.007

    Article  Google Scholar 

  21. V. Govindan and V. Balakrishnan, A Machine Learning Approach in Analysing the Effect of Hyperboles using Negative Sentiment Tweets for Sarcasm Detection, J. King Saud Univ. Comput. Inform. Sci., 2022 https://doi.org/10.1016/j.jksuci.2022.01.008

    Article  Google Scholar 

  22. D. Fernández-Cerero, J.A. Troyano, A. Jakóbik, and A. Fernández-Montes, Machine Learning Regression to Boost Scheduling Performance in Hyper-scale cloud-Computing Data Centres, J. King Saud Univ. Comput. Inform. Sci., 2022 https://doi.org/10.1016/j.jksuci.2022.04.008

    Article  Google Scholar 

  23. G. Shanmugasundar, M. Vanitha, R. Čep, V. Kumar, K. Kalita, and M. Ramachandran, A Comparative Study of Linear Random Forest and AdaBoost Regressions for Modeling Non-Traditional Machining, Processes, 2021, 9(11), p 2015.

    Article  CAS  Google Scholar 

  24. A.S. Walia, V. Srivastava, P.S. Rana, N. Somani, N.K. Gupta, G. Singh, D.Y. Pimenov, T. Mikolajczyk, and N. Khanna, Prediction of Tool Shape in Electrical Discharge Machining of EN31 Steel Using Machine Learning Techniques, Metals, 2021, 11(11), p 1668.

    Article  CAS  Google Scholar 

  25. S. Bhattacharya and S. Chakraborty, Prediction of Responses in a CNC Milling Operation Using Random Forest Regressor, Facta Univ. Ser. Mech. Eng., 2021 https://doi.org/10.22190/FUME210728071B

    Article  Google Scholar 

  26. M. Zhu, Y. Yang, X. Feng, Z. Du, and J. Yang, Robust Modeling Method for Thermal Error of CNC Machine Tools Based on Random Forest Algorithm, J. Intell. Manuf., 2022 https://doi.org/10.1007/s10845-021-01894-w

    Article  Google Scholar 

  27. A. Agrawal, S. Goel, W.B. Rashid, and M. Price, Prediction of Surface Roughness during Hard Turning of AISI 4340 Steel (69 HRC), Appl. Soft Comput., 2015, 30, p 279–286.

    Article  Google Scholar 

  28. J. Jiang, Y. Xiong, Z. Zhang, and D.W. Rosen, Machine Learning Integrated Design for Additive Manufacturing, J. Intell. Manuf., 2022, 33(4), p 1073–1086.

    Article  Google Scholar 

  29. C. Xia, Z. Pan, J. Polden, H. Li, Y. Xu, and S. Chen, Modelling and Prediction of Surface Roughness in Wire arc Additive Manufacturing using Machine Learning, J. Intell. Manuf., 2022, 33(5), p 1467–1482.

    Article  Google Scholar 

  30. X. Li, X. Jia, Q. Yang, and J. Lee, Quality Analysis in Metal Additive Manufacturing with Deep Learning, J. Intell. Manuf., 2020, 31(8), p 2003–2017.

    Article  Google Scholar 

  31. I. Baturynska and K. Martinsen, Prediction of Geometry Deviations in Additive Manufactured Parts: Comparison Of Linear Regression with Machine Learning Algorithms, J. Intell. Manuf., 2021, 32(1), p 179–200.

    Article  Google Scholar 

  32. R. Akhter and S.A. Sofi, Precision Agriculture using IoT Data Analytics and Machine Learning, J. King Saud Univ. Comput. Inform. Sci., 2021 https://doi.org/10.1016/j.jksuci.2021.05.013

    Article  Google Scholar 

  33. H. Wu, Z. Yu, and Y. Wang, Experimental Study of the Process Failure Diagnosis in Additive Manufacturing Based on Acoustic Emission, Meas. J. Int. Meas. Confed., 2019, 136, p 445–453. ((in English))

    Article  Google Scholar 

  34. F. Aggogeri, N. Pellegrini, and F.L. Tagliani, Recent Advances on Machine Learning Applications in Machining Processes, Appl. Sci., 2021, 11(18), p 8764.

    Article  CAS  Google Scholar 

  35. R. Kumar, R. Kumar, N. Ranjan, and J.S. Chohan, On Development of Alternating Layer Acrylonitrile Butadiene Styrene-Al Composite Structures Using Additive Manufacturing, J. Mater. Eng. Perform., 2022 https://doi.org/10.1007/s11665-022-06913-2

    Article  Google Scholar 

  36. R. Piyush and R. Kumar, Investigations on Modulus of Elasticity of Aluminium Reinforced 3D Printed Structures, Mater. Today Proc., 2022, 48, p 1055–1058.

    Article  CAS  Google Scholar 

  37. R. Kumar, J.S. Chohan, R. Kumar, A. Yadav-Piyush, and N. Singh, Hybrid Fused Filament Fabrication for Manufacturing of Al Microfilm Reinforced PLA Structures, J. Braz. Soc. Mech. Sci. Eng., 2020, 42(9), p 481.

    Article  CAS  Google Scholar 

  38. S. Khabia and K.K. Jain, Influence of Change in Layer Thickness on Mechanical Properties of Components 3D Printed on Zortrax M 200 FDM Printer with Z-ABS Filament Material & Accucraft i250+ FDM Printer with Low Cost ABS Filament Material, Mater. Today Proc., 2020, 26, p 1315–1322.

    Article  CAS  Google Scholar 

  39. G. Ehrmann and A. Ehrmann, Investigation of the Shape-Memory Properties of 3D Printed PLA Structures with Different Infills, Polymers, 2021, 13, p 164.

    Article  CAS  Google Scholar 

  40. A.S. Sidhu, S. Singh, R. Kumar, D.Y. Pimenov, and K. Giasin, Prioritizing Energy-Intensive Machining Operations and Gauging the Influence of Electric Parameters: An Industrial Case Study, Energies, 2021, 14(16), p 4761.

    Article  CAS  Google Scholar 

  41. R.S. Sidhu, R. Kumar, R. Kumar, P. Goel, S. Singh, D.Y. Pimenov, K. Giasin, and K. Adamczuk, Joining of Dissimilar Al and Mg Metal Alloys by Friction Stir Welding, Materials, 2022 https://doi.org/10.3390/ma15175901

    Article  Google Scholar 

  42. S. Singh, R. Kumar, R. Kumar, J.S. Chohan, N. Ranjan, and R. Kumar, Aluminum Metal Composites Primed by Fused Deposition Modeling-assisted Investment Casting: Hardness, Surface, Wear, and Dimensional Properties, Proc. Inst. Mech. Eng. Part L J. Des. Appl., 2021, 236(3), p 674–691.

    Google Scholar 

  43. R. Kumar, S. Singh, V. Aggarwal, S. Singh, D.Y. Pimenov, K. Giasin, and K. Nadolny, Hand and Abrasive Flow Polished Tungsten Carbide Die: Optimization of Surface Roughness Polishing Time and Comparative Analysis in Wire Drawing, Materials, 2022, 15(4), p 1287.

    Article  CAS  Google Scholar 

  44. R. Kumar, P.S. Bilga, and S. Singh, Multi Objective Optimization using different Methods of Assigning Weights to Energy Consumption Responses, Surface Roughness and Material Removal Rate During Rough Turning Operation, J. Clean. Prod., 2017, 164, p 45–57.

    Article  CAS  Google Scholar 

  45. V. Chodha, R. Dubey, R. Kumar, S. Singh, and S. Kaur, Selection of Industrial arc Welding Robot with TOPSIS and Entropy MCDM Techniques, Mater. Today Proc., 2021 https://doi.org/10.1016/j.matpr.2021.04.487

    Article  Google Scholar 

  46. R. Kumar, S. Singh, P.S. Bilga-Jatin, J. Singh, S. Singh, M.-L. Scutaru, and C.I. Pruncu, Revealing the Benefits of Entropy Weights Method for Multi-objective Optimization in Machining Operations: A Critical Review, J. Mater. Res. Technol., 2021, 10, p 1471–1492.

    Article  Google Scholar 

  47. G. Singh, S. Singh, C. Prakash, R. Kumar, R. Kumar, and S.J.P.C. Ramakrishna, Characterization of Three-dimensional Printed Thermal-stimulus polylactic Acid-hydroxyapatite-based Shape Memory Scaffolds, Polym. Compos., 2020, 41(9), p 3871–3891.

    Article  CAS  Google Scholar 

  48. C.Y. Hsu and J.C. Chien, Ensemble Convolutional Neural Networks with Weighted Majority for Wafer bin map Pattern Classification, J. Intell. Manuf., 2022, 33(3), p 831–844.

    Article  Google Scholar 

  49. H. Xu, Q. Liu, J. Casillas, M. McAnally, N. Mubtasim, L.S. Gollahon, D. Wu, and C. Xu, Prediction of Cell Viability in Dynamic Optical projection Stereolithography-Based Bioprinting using Machine Learning, J. Intell. Manuf. , 2022, 33(4), p 995–1005.

    Article  Google Scholar 

  50. D.H.C.S.S. Martins, A.A. de Lima, M.F. Pinto, D.O. Hemerly, T.M. Prego, F.L. Silva, L. Tarrataca, U.A. Monteiro, R.H.R. Gutiérrez, and D.B. Haddad, Hybrid Data Augmentation Method for Combined Failure Recognition in Rotating Machines, J. Intell. Manuf., 2022 https://doi.org/10.1007/s10845-021-01873-1

    Article  Google Scholar 

  51. M. Zhu, Y. Yang, X. Feng, Z. Du, and J. Yang, Robust Modeling Method for Thermal Error of CNC Machine Tools Based on Random Forest Algorithm, J. Intell. Manuf., 2022 https://doi.org/10.1007/s10845-021-01894-w

    Article  Google Scholar 

  52. J. Li, L. Cao, J. Xu, S. Wang, and Q. Zhou, In Situ Porosity Intelligent Classification of Selective Laser Melting Based on Coaxial Monitoring and Image Processing, Meas. J. Int. Meas. Confed., 2022, 187, p 110232.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are also highly thankful for technical assistance to the University Center for Research and Development, Chandigarh University, India, and the Center for Manufacturing Research, Guru Nanak Dev Engineering College, Ludhiana, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raman Kumar.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, N., Kumar, R., Kumar, R. et al. Investigation of Fused Filament Fabrication-Based Manufacturing of ABS-Al Composite Structures: Prediction by Machine Learning and Optimization. J. of Materi Eng and Perform 32, 4555–4574 (2023). https://doi.org/10.1007/s11665-022-07431-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07431-x

Keywords

Navigation