Skip to main content
Log in

Thermal impurity reactions and structural changes in slightly carbonated hydroxyapatite

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Lattice and surface impurity reactions and structural changes induced by them in slightly carbonated hydroxyapatite (SCHA) treated at 25–1100ºC were comprehensively studied. The SCHA was processed by a conventional wet synthesis at a high possible temperature (96ºC) using ammonium containing parent reagents. IR-spectroscopy, XRD, TG-DTA technique and mass spectrometric thermal analysis (MSTA) were employed for characterization of the samples. \( {\text{NH}}_{4}{}^{+ } \) with \( {\text{H}}_{{\text{3}}} {\text{O}}^{{\text{ + }}} \) in cationic- and \( {\text{CO}}_{3}{}^{2 - } \) (A- and B-positions) with \( {\text{HPO}}_{4}{}^{2 - } \) in anionic sites, and H2O, \( {\text{CO}}_{3}{}^{2 - } \)(\( {\text{HCO}}_{3}{}^{-} \)) \( {\text{NO}}_{3}{}^{- } \), N x H y on the surface of particles were found and considered as impurity groups. Complicated changes in lattice constants of the SCHA stepwise annealed in air (for 2 h) were revealed; the changes were associated with reactions of the impurity groups. Filling the hexed sites with hydroxyl ions above 500ºC was shown to happen partly due to lattice reactions but was mainly owing to hydrolysis of the SCHA by water molecules in air. Decomposition of \( {\text{CO}}_{3}{}^{2 - } \) groups proceeded through both thermal destruction and reactions with some of the impurity ions. The decarbonation in A-sites occurred at much lower temperatures (450–600ºC) than in B-sites (700–950ºC) and was first revealed to happen in two stages: due to an impurity reaction around 500ºC, and then through thermal destruction at 570ºC. A redistribution of \( {\text{CO}}_{3}{}^{2 - } \) ions, decreasing in amount on the whole, was observed upon annealing above 500ºC. To avoid possible erroneous conclusions from TG-data, a sensitive method was shown to be required for monitoring gaseous decomposition products (such as the MSTA in this study), in case several impurity groups were present in a SCHA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dry ME, Beebe RA. Adsorption studies on bone mineral and synthetic hydroxyapatite. J Phys Chem. 1960;64:1300–4. doi:10.1021/j100838a042.

    Article  CAS  Google Scholar 

  2. Bett JA, Christner LG, Hall KW. Studies of the hydrogen held by solids. XII. Hydroxyapatite catalysts. J Am Chem Soc. 1967;89(22):5535–41. doi:10.1021/ja00998a003.

    Article  CAS  Google Scholar 

  3. Nagai M, Nishino T. A new type of CO2 gas sensor comprising porous hydroxyapatite ceramics. Sens Actuators. 1988;15:145–51. doi:10.1016/0250-6874(88)87004-5.

    Article  CAS  Google Scholar 

  4. Jeanjean J, Rouchaud JC, Tran L, Fedoroff M. Sorption of uranium and other heavy metals on hydroxyapatite. J Radioanal Nucl Chem Lett. 1995;201(6):529–39. doi:10.1007/BF02162730.

    Article  CAS  Google Scholar 

  5. Reichert J, Binner JGP. An evaluation of hydroxyapatite-based filters for removal of heavy metal ions from aqueous solutions. J Mater Sci. 1996;31:1231–41. doi:10.1007/BF00353102.

    Article  ADS  CAS  Google Scholar 

  6. Ratner BD, et al. Biomaterials science: an introduction to materials in medicine. In: Ratner BD, et al., editors. California: Elsevier Academic Press; 2004.

  7. Narasaraju TS, Phebe DE. Some physico-chemical aspects of hydroxyapatite. J Mater Sci. 1996;31:1–21. doi:10.1007/BF00355120.

    Article  ADS  CAS  Google Scholar 

  8. LeGeros RZ, Bonel G, Legros R. Types of “H2O” in human enamel and in precipitated apatites. Calcif Tissue Res. 1978;26:111–8. doi:10.1007/BF02013245.

    Article  PubMed  CAS  Google Scholar 

  9. Feki HE, Savariault JM, Salah BA. Structure refinements by the Rietveld method of partially substituted hydroxyapatite: Ca 9 Na 0,5(PO 4)4,5(CO 3)1,5(OH)2. J Alloy Comp. 1999;287:114–20. doi:10.1016/S0925-8388(99)00070-5.

    Article  Google Scholar 

  10. Rehman I, Bonfield W. Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. J Mater Sci Mater Med. 1997;8:1–4. doi:10.1023/A:1018570213546.

    Article  PubMed  CAS  Google Scholar 

  11. Zyman Z, Rokhmistrov D, Ivanov I, Epple M. The influence of foreign ions on the crystal lattice of hydroxyapatite upon heating. Mat-wiss Werkstoftech. 2006;37(6):530–2. doi:10.1002/mawe.200600032.

    Article  CAS  Google Scholar 

  12. Gibson IR, Bonfield W. Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite. J Biomed Mater Res. 2002;59:697–708. doi:10.1002/jbm.10044.

    Article  PubMed  CAS  Google Scholar 

  13. Mortier A, Lemaitre J, Rouxhet PG. Temperature-programmed characterization of synthetic calcium-deficient phosphate apatites. Thermochim Acta. 1989;143:265–82. doi:10.1016/0040-6031(89)85065-8.

    Article  CAS  Google Scholar 

  14. Anderson CW, Beebe RA, Kittelberger JS. Programmed temperature dehydration studies of octacalcium phosphate. J Phys Chem. 1974;78(16):1631–5. doi:10.1021/j100609a007.

    Article  CAS  Google Scholar 

  15. Dowker SEP, Elliott JC. Infrared study of trapped carbon dioxide in thermally treated apatites. J Solid State Chem. 1983;47:164–73. doi:10.1016/0022-4596(83)90005-1.

    Article  ADS  CAS  Google Scholar 

  16. Fowler BO, Moreno EC, Brown WE. Infra-red spectra of hydroxyapatite, octacalcium phosphate and pyrolysed octacalcium phosphate. Arch Oral Biol. 1966;11:477–92. doi:10.1016/0003-9969(66)90154-3.

    Article  PubMed  CAS  Google Scholar 

  17. Berry EE, Baddiel CB. Some assignments in the infra-red spectrum of octacalcium phosphate. Spectrochimica Acta. 1967;23A:1781–92.

    Google Scholar 

  18. LeGeros RZ. Effect of carbonate on the lattice parameters of apatite. Nature. 1965;4982:403–4. doi:10.1038/206403a0.

    Article  Google Scholar 

  19. Vignoles M, Bonel G, Young RA. Occurrence of nitrogenous species in precipitated B-type carbonated hydroxyapatites. Calcif Tissue Int. 1987;40:64–70. doi:10.1007/BF02555707.

    Article  PubMed  CAS  Google Scholar 

  20. Glinka NL. General chemistry. Leningrad: Chemistry Press; 1977.

    Google Scholar 

  21. Simpson DR. Substitutions in apatite: I potassium-bearing apatite. Am Mineral. 1968;53:432–44.

    CAS  Google Scholar 

  22. Cornu A, Massot R. Compilation of mass spectral data. London: Heyden and Son Ltd; 1974.

    Google Scholar 

  23. Apfelbaum F, Diab H, Mayer I, Featherstone JDB. An FTIR study of carbonate in synthetic apatites. J Inorg Biochem. 1992;45:277–82. doi:10.1016/0162-0134(92)84016-G.

    Article  CAS  Google Scholar 

  24. Cazalbou S, Eichert D, Ranz X, Drouet C, Combes C, Harmand MF, et al. Ion exchange in apatites for biomedical applications. J Mater Sci Mater Med. 2005;16:405–9. doi:10.1007/s10856-005-6979-2.

    Article  PubMed  CAS  Google Scholar 

  25. Jäger C, Welzel T, Meyer-Zaika W, Epple M. A solid-state NMR investigation of the structure of nanocrystalline hydroxyapatite. Magn Reson Chem. 2006;44:573–80. doi:10.1002/mrc.1774.

    Article  PubMed  Google Scholar 

  26. Berry EE. The structure and composition of some calcium-deficient apatites.—I and II. J Inorg Nucl Chem. 1967;29:317–27, 1585–90.

    Article  CAS  Google Scholar 

  27. Trombe JC, Montel G. Some features of the incorporation of oxygen in different oxidation states in the apatite lattice. J Inorg Nucl Chem. 1978;40:15–21. doi:10.1016/0022-1902(78)80298-X.

    Article  CAS  Google Scholar 

  28. Kijima T, Tsutsumi M. Preparation and thermal properties of dense polycrystalline oxyhydroxyapatite. J Am Ceram Soc. 1979;62:455–60. doi:10.1111/j.1151-2916.1979.tb19104.x.

    Article  CAS  Google Scholar 

  29. Holcomb DW, Young RA. Thermal decomposition of human tooth enamel. Calcif Tissue Int. 1980;31:189–201. doi:10.1007/BF02407181.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Z. Zyman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zyman, Z.Z., Rokhmistrov, D.V., Glushko, V.I. et al. Thermal impurity reactions and structural changes in slightly carbonated hydroxyapatite. J Mater Sci: Mater Med 20, 1389–1399 (2009). https://doi.org/10.1007/s10856-009-3706-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3706-4

Keywords

Navigation