Skip to main content

Advertisement

Log in

Modification of Microstructure and Mechanical Properties of AA6082/ZrB2 Processed by Multipass Friction Stir Processing

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

A Correction to this article was published on 31 October 2023

This article has been updated

Abstract

The present work accomplished homogenously disseminated ZrB2 reinforcement particles and very fine grain structure by multipass friction stir processing (MPFSP) of AA6082. They observed the influence of reinforcement particle ZrB2 on the microstructure and tensile properties of the MPFSP. The coarse dendrite structure of the base material AA6082 was studied using ZrB2 nanoparticles. The MPFSP/ZrB2 successfully shattered these coarse and dendrite clusters, resulting in a uniform microstructure in the stir zone. The MPFSP has observed material flow around the cluster's redistribution. At increased ZrB2 concentration, SEM and EBSD examinations demonstrated that ZrB2 reinforcement particles strongly inhibited grain boundary migration, resulting in a continual reduction in grain size and HAGBs fraction. The tensile properties and microstructure of the MPFSP/ZrB2 of AA6082 were enhanced using a rotational tool speed of 1120 rpm, welding speed of 125 mm/min, and tilt angle of 2°. The reinforcement particles ZrB2 were fragmented completely and uniformly disseminated in the 4th FSP pass. As the FSP increases, the ZrB2 agglomeration reduces. The base metal AA6082's ultimate tensile strength (UTS) was 191 ± 8 MPa with a % strain of 20 ± 0.8. After MPFSP/ZrB2 on AA6082, the UTS was increased as the FSP pass increased. The higher UTS (266 ± 5) was observed at the 4th FSP pass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

References

  1. X. Zhang, S.F. Li, D. Pan, B. Pan, and K. Kondoh, Microstructure and Synergistic- Strengthening Efficiency of CNTs-SiC Dual-Nano Reinforcements in Aluminum Matrix Composites, Compos. Appl. Sci. Manuf., 2018, 105, p 87–96.

    CAS  Google Scholar 

  2. H. Mehdi and R.S. Mishra, Effect of Friction Stir Processing on Mechanical Properties and Heat Transfer of TIG Welded Joint of AA6061 and AA7075, Def. Technol., 2021, 17(3), p 715–727.

    Google Scholar 

  3. F. Khodabakhshi, M. Nosko, and A.P. Gerlich, Effect of Graphene Nano-Platelets (GNPs)on the Microstructural Characteristics and Textural Development of an Al-Mg Alloy during Friction-Stir Processing, Surf. Coat. Technol., 2018, 335, p 288–305.

    CAS  Google Scholar 

  4. A. Dolatkhah, P. Golbabaei, M.K.B. Givi, and F. Molaiekiya, Investigating Effects of Process Parameters on Microstructural and Mechanical Properties of Al5052/SiC Metal Matrix Composite Fabricated Via Friction Stir Processing, Mater. Des., 2012, 37, p 458–464.

    CAS  Google Scholar 

  5. M. Sharifitabar, A. Sarani, S. Khorshahian, and A.M. Shafiee, Fabrication of 5052Al/Al2O Nanoceramic Particle Reinforced Composite Via Friction Stir Processing Route, Mater. Des., 2011, 32, p 4164–4172.

    CAS  Google Scholar 

  6. W. Wang, Q.Y. Shi, P. Liu, H.K. Li, and T. Li, A Novel Way to Produce Bulk SiCp Reinforced Aluminum Metal Matrix Composites by Friction Stir Processing, J. Mater. Proc. Technol., 2009, 209(4), p 2099–2103.

    CAS  Google Scholar 

  7. E.R.I. Mahmoud, K. Ikeuchi, and M. Takahashi, Fabrication of SiC Particle Reinforced Composite on Aluminium Surface by Friction Stir Processing, Sci. Technol. Weld. Join., 2008, 13(7), p 607–618.

    CAS  Google Scholar 

  8. R.S. Mishra, Z.Y. Ma, and I. Charit, Friction Stir Processing: A Novel Technique for Fabrication of Surface Composite, Mater. Sci. Eng. A, 2003, 341(1–2), p 307–310.

    Google Scholar 

  9. H. Mehdi and R.S. Mishra, Microstructure and Mechanical Characterization of TIG-Welded Joint of AA6061 and AA7075 by Friction Stir Processing, Part L J. Mater. Des. Appl., 2021, 235(11), p 2531–2546. https://doi.org/10.1177/14644207211007882

    Article  CAS  Google Scholar 

  10. H. Mehdi and R.S. Mishra, Effect of Friction Stir Processing on Mechanical Properties and Wear Resistance of Tungsten Inert Gas Welded Joint of Dissimilar Aluminum Alloys, J. Mater. Eng. Perform., 2021, 30, p 1926–1937.

    CAS  Google Scholar 

  11. H. Mehdi and R.S. Mishra, Influence of Friction Stir Processing on Weld Temperature Distribution and Mechanical Properties of TIG Welded Joint of AA6061 and AA7075, Trans. Indian Inst. Met., 2020, 73, p 1773–1788.

    CAS  Google Scholar 

  12. H. Mehdi and R.S. Mishra, Effect of Friction Stir Processing on Microstructure and Mechanical Properties of TIG Welded Joint of AA6061 and AA7075, Metallogr. Microstruct. Anal., 2020, 9, p 403–418. https://doi.org/10.1007/s13632-020-00640-7

    Article  CAS  Google Scholar 

  13. H. Mehdi and R.S. Mishra, An Experimental Analysis and Optimization of Process Parameters of AA6061 and AA7075 Welded Joint by TIG+FSP Welding Using RSM, Adv. Mater. Process Technol., 2020 https://doi.org/10.1080/2374068X.2020.1829952

    Article  Google Scholar 

  14. M. Narimani, B. Lotfi, and Z. Sadeghian, Investigating the Microstructure and Mechanical Properties of Al-TiB Composite Fabricated by Friction Stir Processing (FSP), Mater. Sci. Eng. A, 2016, 673, p 436–442.

    CAS  Google Scholar 

  15. K. Sun, Q.Y. Shi, Y.J. Sun et al., Microstructure and Mechanical Property of Nano-SiC Strength Mg Bulk Composites Produced by Friction Stir Processing, Mater. Sci. Eng. A, 2012, 547, p 32–37.

    CAS  Google Scholar 

  16. Y. Rui, Z. Zhang, Y. Zhao et al., Effect of Multi-Pass Friction Stir Processing on Microstructure and Mechanical Properties of Al3Ti/A356 Composites, Mater. Charact., 2015, 106, p 62–69.

    Google Scholar 

  17. L. Ceschini, I. Boromei, G. Minak, A. Morri, and F. Tarterini, Effect of Friction Stir Welding on Microstructure, Tensile and Fatigue Properties of the AA7005/10 vol.%Al2O3p Composite, Compos. Sci. Technol., 2007, 67, p 605–615.

    CAS  Google Scholar 

  18. L.M. Marzoli, A.V. Strombeck, J.F. Dos Santos, C. Gambaro, and L.M. Volpone, Friction Stir Welding of an AA6061/Al2O3/20p Reinforced Alloy, Compos. Sci. Technol., 2006, 66, p 363–371.

    CAS  Google Scholar 

  19. M. Amirizad, A.H. Kokabi, M.A. Gharacheh, R. Sarrafi, B. Shalchi, and M. Azizieh, Evaluation of Microstructure and Mechanical Properties in Friction Stir Welded A356 + 15%SiCp Cast Composite, Mater. Lett., 2006, 60, p 565–568.

    CAS  Google Scholar 

  20. X.G. Chen, M.D. Silva, P. Gougeon, and L. St-Georges, Microstructure and Mechanical Properties of Friction Stir Welded AA6063–B4C Metal Matrix Composites, Mater. Sci. Eng. A, 2009, 518, p 174–184.

    Google Scholar 

  21. S.J. Vijay and N. Murugan, Influence of Tool Pin Profile on the Metallurgical and Mechanical Properties of Friction Stir Welded Al–10 wt.% TiB2 Metal Matrix Composite, Mater. Des., 2010, 31, p 3585–3589.

    CAS  Google Scholar 

  22. H. Nami, H. Adgi, M. Sharifitabar, and H. Shamabadi, Microstructure and Mechanical Properties of Friction Stir Welded Al/Mg2Si Metal Matrix Cast Composite, Mater. Des., 2010, 32, p 976–983.

    Google Scholar 

  23. S. Gopalakrishnan and N. Murugan, Prediction of Tensile Strength of Friction Stir Welded Aluminium Matrix TiCp Particulate Reinforced Composite, Mater. Des., 2011, 32, p 462–467.

    CAS  Google Scholar 

  24. H.A. Deore, J. Mishra, A.G. Rao, H. Mehtani, and V.D. Hiwarkar, Effect of Filler Material and Post Process Ageing Treatment on Microstructure, Mechanical Properties and Wear Behaviour of Friction Stir Processed AA 7075 Surface Composites, Surf. Coat. Technol, 2019, 374, p 52–64.

    CAS  Google Scholar 

  25. H. Nami, H. Adgi, M. Sharifitabar, and H. Shamabadi, Microstructure and Mechanical Properties of Friction Stir Welded Al/Mg2Si Metal Matrix Cast Composite, Mater. Des., 2011, 32, p 976–983.

    CAS  Google Scholar 

  26. Z.Y. Zhanga, R. Yang, Y. Lia, G. Chena, Y.T. Zhao, and M.P. Liu, Microstructural Evolution and Mechanical Properties of Friction Stir Processed ZrB2/6061Al Nanocomposites, J. Alloys Compd., 2018, 762, p 312–318.

    Google Scholar 

  27. I. Dinaharan, N. Murugan, and S. Parameswaran, Developing an Empirical Relationship to Predict the Influence of Process Parameters on Tensile Strength of Friction Stir Welded AA6061/0–10 wt% ZrB2 In Situ Composite, Trans. Indian Inst. Met., 2012, 65, p 159–170.

    CAS  Google Scholar 

  28. N. Kumar, G. Gautam, R.K. Gautam, A. Mohan, and S. Mohan, Wear, Friction and Profilometer Studies of Insitu AA5052/ZrB2 Composites, Tribol. Int., 2016, 97, p 313–326.

    CAS  Google Scholar 

  29. E. Zapata-Solvas, D. Jayaseelan, H.-T. Lin, P. Brown, and W. Lee, Mechanical Properties of ZrB2-and HfB2-Based Ultra-High Temperature Ceramics Fabricated by Spark Plasma Sintering, J. Eur. Ceram. Soc., 2013, 33(7), p 1373–1386.

    CAS  Google Scholar 

  30. M.M. El-Rayes and E. El-Danaf, The Influence of Multi-Pass Friction Stir Processing on the Microstructural and Mechanical Properties of Aluminum Alloy 6082, J. Mater. Process. Technol., 2012, 212, p 1157–1168.

    CAS  Google Scholar 

  31. V. Sharma, U. Prakash, and B.V. Manoj Kumar, Surface Composites by Friction Stir Processing: A Review, J. Mater. Process. Technol., 2015, 224, p 117–134.

    CAS  Google Scholar 

  32. M. Barmouz, M.K.B. Givi, and J. Seyfi, On the Role of Processing Parameters in Producing Cu/SiC Metal Matrix Composites Via Friction Stir Processing: Investigating Microstructure, Microhardness, Wear and Tensile Behavior, Mater. Charact., 2011, 62, p 108–117.

    CAS  Google Scholar 

  33. R. Sathiskumar, N. Murugan, I. Dinaharan, and S.J. Vijay, Characterization of Boron Carbide Particulate Reinforced In Situ Copper Surface Composites Synthesized Using Friction Stir Processing, Mater. Charact., 2013, 84, p 16–27.

    CAS  Google Scholar 

  34. M. Barmouz, M.K. Besharati Givi, and J. Seyfi, On the Role of Processing Parameters in Producing Cu/SiC Metal Matrix Composites Via Friction Stir Processing: Investigating Microstructure, Microhardness, Wear and Tensile Behavior, Mater. Charact., 2011, 62, p 108–117.

    CAS  Google Scholar 

  35. C.J. Hsu, C.Y. Chang, P.W. Kao et al., Al–Al3Ti Nanocomposites Produced In Situ by Friction Stir Processing, Acta Mater., 2006, 54(19), p 5241–5249.

    CAS  Google Scholar 

  36. J.W. Martin, Micromechanisms in Particle Hardened Alloys, Cambridge University Press, Cambridge, 1980.

    Google Scholar 

  37. L. Jiang, H. Yang, J.K. Yee et al., Toughening of Aluminum Matrix Nanocomposites Via Spatial Arrays of Boron Trailing Side Carbide Spherical Nanoparticles, Acta Mater., 2016, 103, p 128–140.

    CAS  Google Scholar 

  38. M. Paidar, O.O. Ojo, H.R. Ezatpour, and A. Heidarzadeh, Influence of Multi-Pass FSP on the Microstructure, Mechanical Properties and Tribological Characterization of Al/B4C Composite Fabricated by Accumulative Roll Bonding (ARB), Surf. Coat. Technol., 2019, 361, p 159–169.

    CAS  Google Scholar 

  39. M. Barmouz and M.K. Besharati Givi, Fabrication of In Situ Cu/SiC Composites Using Multi-Pass Friction Stir Processing: Evaluation of Microstructural, Porosity, Mechanical and Electrical Behavior, Compos. Part A Appl. Sci. Manuf., 2011, 42(10), p 1445–1453.

    Google Scholar 

  40. S. Rathee, S. Maheshwari, A.N. Siddiquee, and M. Srivastava, Analysis of Microstructural Changes in Enhancement of Surface Properties in Sheet Forming of Al Alloys Via Friction Stir Processing, Mater. Today Proc., 2017, 4(2, Part A), p 452–458.

    Google Scholar 

  41. P. Su, A. Gerlich, T.H. North, and G.J. Bendzsak, Material Flow during Friction Stir Spot Welding, Sci. Technol. Weld. Join., 2013, 11(1), p 61–71.

    Google Scholar 

  42. O.P. Oladijo, A.M. Venter, L.A. Cornish, and N. Sacks, X-Ray Diffraction Measurement of Residual Stress in WC-Co Thermally Sprayed Coatings onto Metal Substrates, Surf. Coat. Technol., 2012, 206, p 4725–4729.

    CAS  Google Scholar 

  43. Z. Zhang and D.L. Chen, Consideration of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites: A Model for Predicting Their Yield Strength Author Links Open Overlay Panel, Scr. Mater., 2006, 54(7), p 1321–1326.

    CAS  Google Scholar 

  44. H. Mehdi and R.S. Mishra, Mechanical Properties and Microstructure Studies in Friction Stir Welding (FSW) Joints of Dissimilar Alloy- A Review, J. Achiev. Mater. Manuf. Eng., 2016, 77(1), p 31–40.

    Google Scholar 

  45. A. Simar, Y. Brechet, B.D. Meester, A. Denquin, C. Gallais, and T. Pardoen, Integrated Modeling of Friction Stir Welding of 6xxx Series Al Alloys: Process Microstructure and Properties, Prog. Mater. Sci., 2012, 57, p 95–183.

    CAS  Google Scholar 

  46. Z. Zhang, Z.Y. Wan, L.E. Lindgren, Z.J. Tan, and X. Zhou, The Simulation of Precipitation Evolutions and Mechanical Properties in Friction Stir Welding with Post Weld Heat Treatments, J. Mater. Eng. Perform., 2017, 26, p 5731–5740.

    CAS  Google Scholar 

  47. M. Srivastava, S. Rathee, and A.N. Siddiquee, Investigation on the Effects of Silicon Carbide and Cooling Medium during Multi-Pass FSP of Al-Mg/SiC Surface Composites, Silicon, 2019, 11, p 2149–2157.

    CAS  Google Scholar 

  48. M.M. Moradi, H.J. Aval, R. Jamaati, S. Amirkhanlou, and S. Ji, Microstructure and Texture Evolution of Friction Stir Welded Dissimilar Aluminum Alloys: AA2024 and AA6061, J. Manuf. Process., 2018, 32, p 1–10.

    Google Scholar 

  49. X.C. Liu, Y.F. Sun, T. Nagira, K. Ushioda, and H. Fujii, Evaluation of Dynamic Development of Grain Structure during Friction Stir Welding of Pure Copper using a Quasi In Situ Method, J. Mater. Sci. Technol., 2019, 35, p 1412–1421.

    CAS  Google Scholar 

  50. M. Barmouz and M.K. Besharati Givi, Fabrication of In Situ Cu/SiC Composites using Multi-Pass Friction Stir Processing: Evaluation of Microstructural, Porosity, Mechanical and Electrical Behavior, Compos. Part A Appl. Sci. Manuf., 2011, 42, p 1445–1453.

    Google Scholar 

  51. J.Q. Su, T.W. Nelson, R. Mishra, and M. Mahoney, Microstructural Investigation Friction Stir Welded 7050–T651 Aluminium, Acta Mater., 2003, 51, p 713–729.

    CAS  Google Scholar 

  52. P.B. Prangnell and C.P. Heason, Grain Structure Formation during Friction Stir Welding Observed by the “Stop Action Technique,” Acta Mater., 2005, 53, p 3179–3192.

    CAS  Google Scholar 

  53. L.B. Johannes and R.S. Mishra, Multiple Passes of Friction Stir Processing for the Creation of Superplastic 7075 Aluminum, Mater. Sci. Eng. A, 2007, 464(1), p 255–260.

    Google Scholar 

  54. G.Q. Huang, J. Wu, W.T. Hou, L.H. Shah, A.R.H. Midawi, A.P. Gerlich, Y.F. Shen, and F.Q. Meng, Microstructural Evolution and Mechanical Behavior of Powder Metallurgy Based SiC/Al–Mg-Sc-Zr Nanocomposite Subjected to Multi-Pass Friction Stir Processing, Mater. Sci. Eng. A, 2021, 806, 140831.

    CAS  Google Scholar 

  55. M. Abbasi, M. Givi, and A. Ramazani, Friction Stir Vibration Processing: A New Method to Improve the Microstructure and Mechanical Properties of Al5052/SiC Surface Nanocomposite Layer, Int. J. Adv. Manuf. Technol., 2019, 100, p 1463–1473.

    Google Scholar 

  56. G. AzimiRoeen, S.F. Kashani-Bozorg, M. Nosko, and S. Lotfian, Mechanical and Microstructural Characterization of Hybrid Aluminum Nanocomposites Synthesized from an Al–Fe3O4 System by Friction Stir Processing, Met. Mater. Int., 2019, 26(9), p 1441–1453.

    Google Scholar 

  57. F. Khodabakhshi, M. Haghshenas, J. Chen, B. Shalchi Amirkhiz, J. Li, and A.P. Gerlich, Bonding Mechanism and Interface Characterisation during Dissimilar Friction Stir Welding of an Aluminium/Polymer Bi-Material Joint, Sci. Technol. Weld. Join., 2017, 22, p 182–190.

    CAS  Google Scholar 

  58. H. Mehdi and R.S. Mishra, Consequence of Reinforced SiC Particles on Microstructural and Mechanical Properties of AA6061 Surface Composites by Multi-Pass FSP, J. Adhes. Sci. Technol., 2021 https://doi.org/10.1080/01694243.2021.1964846

    Article  Google Scholar 

  59. M. Koilraj, V. Sundareswaran, S. Vijayan, and S.R.K. Rao, Friction Stir Welding of Dissimilar Aluminum Alloys AA2219 to AA5083- Optimization of Process Parameters using Taguchi Technique, Mater. Des., 2012, 42, p 1–7.

    CAS  Google Scholar 

  60. O.T. Middling, L.D. Oosterkamp, and J. Bersaas, Friction stir welding aluminium process and applications. In: Proceedings of the Seventh International Conference on 'Joints in Aluminum', INALCO98, 1998.

  61. M. Paidar, A. Asgari, O.O. Ojo, and A. Saberi, Mechanical Properties and Wear Behavior of AA5182/WC Nanocomposite Fabricated by Friction Stir Welding at Different Tool Traverse Speeds, J. Mater. Eng. Perform., 2018, 27, p 1714–1724.

    CAS  Google Scholar 

  62. D.K. Sharma, V. Patel, V. Badheka, K. Mehta, and G. Upadhyay, Fabrication of Hybrid Surface Composites AA6061/(B4 C+MoS ) Via Friction Stir Processing, J. Tribol., 2019, 141(5), p 52201–52210.

    CAS  Google Scholar 

  63. Y.B. Tan, X.M. Wang, M. Ma, J.X. Zhang, W.C. Liu, R.D. Fu, and S. Xiang, A Study on Microstructure and Mechanical Properties of AA3003 Aluminum Alloy Joints by Underwater Friction Stir Welding, Mater. Charact., 2017, 127, p 41.

    CAS  Google Scholar 

  64. D. Canadinc, E. Biyikli, T. Niendorf, and H.J. Maier, Experimental and Numerical Investigation of the Role of Grain Boundary Misorientation Angle on the Dislocation-Grain Boundary Interactions, Adv. Eng. Mater., 2011, 13(4), p 281.

    CAS  Google Scholar 

  65. K.T. Huang, T.S. Lui, and L.H. Chen, Effect of Microstructural Feature on the Tensile Properties and Vibration Fracture Resistance of Friction Stirred 5083 Alloy, J. Alloys Compd., 2011, 509(27), p 7466.

    CAS  Google Scholar 

  66. S.S. Mirjavadi, M. Alipour, A.M.S. Hamouda, A. Matin, S. Kord, B.M. Afshari, and P.G. Koppad, Effect of Multi-Pass Friction Stir Processing on the Microstructure, Mechanical and Wear Properties of AA5083/ZrO2 Nanocomposites, J. Alloys Compd., 2017, 726, p 1262–1273.

    CAS  Google Scholar 

  67. M. Bodaghi and K. Dehghani, Friction Stir Welding of AA5052: The Effects of SiC Nanoparticles Addition, Int. J. Adv. Manuf. Technol., 2017, 88, p 2651–2660.

    Google Scholar 

  68. A. Heidarzadeh, R.V. Barenji, M. Esmaily, and A.R. Ilkhichi, Tensile Properties of Friction Stir Welds of AA 7020 Aluminum Alloy, Trans. Indian Inst. Met., 2015, 68, p 757–767.

    CAS  Google Scholar 

  69. H.J. Liu, H. Fujii, M. Maeda, and K. Nogi, Tensile Properties and Fracture Locations of Friction-Stir-Welded Joints of 2017–T351 Aluminum Alloy, J Mat. Proc. Technol, 2013, 142, p 692–696.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Husain Mehdi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehdi, H., Mishra, R.S. Modification of Microstructure and Mechanical Properties of AA6082/ZrB2 Processed by Multipass Friction Stir Processing. J. of Materi Eng and Perform 32, 285–295 (2023). https://doi.org/10.1007/s11665-022-07080-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07080-0

Keywords

Navigation