Skip to main content
Log in

Influence of Stored Strain on Fabricating of Al/SiC Nanocomposite by Friction Stir Processing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this work, 1050 aluminum (Al) sheets were annealed and severely deformed by 1, 2, and 3 passes of constrained groove pressing process to obtain the various initial stored strain values of 0, 1.16, 2.32, and 3.48, respectively. Friction stir processing (FSP) was then applied using SiC nanoparticles to fabricate Al/SiC nanocomposite with approximately 1.5 vol pct reinforced particles. Microstructural examinations revealed that an increase in the initial stored strain of the base metal led to the formation of finer grain structure after 1 pass of FSP. The finer grain structure occurred in the stir zone where a sufficient amount of nanoparticles with a relatively proper distribution existed. However, the initial stored strain value had a contrary influence in the regions with low volume fraction of nanoparticles. In fact, more stored strain in the base metal provided more driving force for both nucleation and grain growth of newly recrystallized grains at the stir zone. Pinning effect of well-distributed nanoparticles could effectively retard grain growth leading to the formation of very fine grain structure. Also it was observed that the initial stored strain values did not have impressive rule in the microstructural evolutions at the stir zone during the second and third FSP passes signifying that all of the stored energy in the base metal would be released after 1 pass of FSP. The results obtained with microhardness measurement at the stir zone were fairly in agreement with those achieved by the microstructure assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. R. Bauri, D. Yadav, and G. Suhas: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4732–39.

    Article  Google Scholar 

  2. J. Guo, S. Amira, P. Gougeon, and X.-G. Chen: Mater. Charact., 2011, vol. 62, pp. 865–77.

    Article  Google Scholar 

  3. L. Ke, C. Huang, L. Xing, and K. Huang: J. Alloys Compd., 2010, vol. 503, pp. 494–99.

    Article  Google Scholar 

  4. M.A. Moghaddas and S.F. Kashani-Bozorg: Mater. Sci. Eng. A, 2013, vol. 559, pp. 187–93.

    Article  Google Scholar 

  5. C. Hu and T.N. Baker: J. Mater. Sci., 1995, vol. 30, pp. 891–97.

    Article  Google Scholar 

  6. C. Hu and T. N.Baker: J. Mater. Sci., 1997, vol. 32, pp. 5047–51.

    Article  Google Scholar 

  7. S.-H. Choo, S. Lee, and S.-J. Kwon: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1211–21.

    Article  Google Scholar 

  8. K. Shin and S. Lee: Met. Mater. Int., 2003, vol. 9, pp. 549–53.

    Article  Google Scholar 

  9. S.-H. Choo, S. Lee, and S.-J. Kwon: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 3131–41.

    Article  Google Scholar 

  10. M. Gui and S.B. Kang: Mater. Lett., 2000, vol. 46, pp. 296–302.

    Article  Google Scholar 

  11. M. Gui, S.B. Kang, and K. Euh: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2471–80.

    Article  Google Scholar 

  12. A.N. Attia: Mater. Des., 2001, vol. 22, pp. 459–66.

    Article  Google Scholar 

  13. C.J. Hsu, C.Y. Chang, P.W. Kao, N.J. Ho, and C.P. Chang: Acta Mater., 2006, vol. 54, pp. 5241–49.

    Article  Google Scholar 

  14. M. Sharifitabar, A. Sarani, S. Khorshahian, and M. Shafiee Afarani: Mater. Des., 2011, vol. 32, pp. 4164–72.

    Article  Google Scholar 

  15. R.S. Mishra, Z.Y. Ma, and I. Charit: Mater. Sci. Eng. A, 2003, vol. 341, pp. 307–10.

    Article  Google Scholar 

  16. H.S. Arora, H. Singh, and B.K. Dhindaw: Int. J. Adv. Manuf. Technol., 2011, vol. 61, pp. 1043–55.

    Article  Google Scholar 

  17. P. Asadi, M.K.B. Givi, K. Abrinia, M. Taherishargh, and R. Salekrostam: J. Mater. Eng. Perform., 2011, vol. 20, pp. 1554–62.

    Article  Google Scholar 

  18. M. Barmouz, P. Asadi, M.K. Besharati Givi, and M. Taherishargh: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1740–49.

    Article  Google Scholar 

  19. M. Barmouz and M.K.B. Givi: Compos. A, 2011, vol. 42, pp. 1445–53.

    Article  Google Scholar 

  20. G. Faraji and P. Asadi: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2431–40.

    Article  Google Scholar 

  21. C.J. Hsu, P.W. Kao, and N.J. Ho: Scripta Mater., 2005, vol. 53, pp. 341-45.

    Article  Google Scholar 

  22. I.S. Lee, P.W. Kao, and N.J. Ho: Intermetallics, 2008, vol. 16, pp. 1104–08.

    Article  Google Scholar 

  23. A. Shamsipur, S.F. Kashani-Bozorg, and A. Zarei-Hanzaki: Surf. Coat. Technol., 2011, vol. 206, pp. 1372–81.

    Article  Google Scholar 

  24. C.M. Hu, C.M. Lai, X.H. Du, N.J. Ho, and J.C. Huang: Scripta Mater., 2008, vol. 59, pp. 1163–66.

    Article  Google Scholar 

  25. J. Qu, H. Xu, Z. Feng, D.A. Frederick, L. An, and H. Heinrich: Wear, 2011, vol. 271, pp. 1940–45.

    Article  Google Scholar 

  26. A. Shafiei-Zarghani, S.F. Kashani-Bozorg, and A.Z. Hanzaki: Wear, 2011, vol. 270, pp. 403–12.

    Article  Google Scholar 

  27. B. Zahmatkesh and M.H. Enayati: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6734–40.

    Article  Google Scholar 

  28. Y. Mazaheri, F. Karimzadeh, and M.H. Enayati: J. Mater. Process. Technol., 2011, vol. 211, pp. 1614–19.

    Article  Google Scholar 

  29. A. Dolatkhah, P. Golbabaei, M.K. Besharati Givi, and F. Molaiekiya: Mater. Des., 2012, vol. 37, pp. 458–64.

  30. W. Wang, Q.-y. Shi, P. Liu, H.-k. Li, and T. Li: J. Mater. Process. Technol., 2009, vol. 209, pp. 2099-2103.

    Article  Google Scholar 

  31. R.Z. Valiev and T.G. Langdon: Prog. Mater. Sci., 2006, vol. 51, pp. 881–981.

    Article  Google Scholar 

  32. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R.G. Hong: Scripta Mater., 1998, vol. 39, pp. 1221–27.

    Article  Google Scholar 

  33. M.S. Khorrami, M. Kazeminezhad, and A.H. Kokabi: Mater. Sci. Eng. A, 2012, vol. 543, pp. 243–48.

    Article  Google Scholar 

  34. M. Sarkari Khorrami, M. Kazeminezhad, and A.H. Kokabi: Mater. Des., 2012, vol. 40, pp. 364–72.

    Article  Google Scholar 

  35. M. Sarkari Khorrami, M. Kazeminezhad, A.H. Kokabi: Mater. Sci. Eng. A, 2014, vol. 602, pp. 110-18.

    Article  Google Scholar 

  36. Y. Sun, H. Fujii, Y. Takada, N. Tsuji, K. Nakata, and K. Nogi: Mater. Sci. Eng. A, 2009, vol. 527, pp. 317–21.

    Article  Google Scholar 

  37. D.H. Shin, J. Park, Y. Kim, and K. Park: Mater. Sci. Eng. A, 2002, vol. 328, pp. 98–103.

    Article  Google Scholar 

  38. E. Hosseini and M. Kazeminezhad: Mater. Des., 2011, vol. 32, pp. 487–94.

    Article  Google Scholar 

  39. M. Kazeminezhad and E. Hosseini: Mater. Des., 2010, vol. 31, pp. 94–103.

    Article  Google Scholar 

  40. J. Zrnik, T. Kovarikb, Z.Novya, and M. Cieslarc: Mater. Sci. Eng. A, 2009, vol. 503, pp. 126–29.

    Article  Google Scholar 

  41. E. Hosseini and M. Kazeminezhad: Mater. Sci. Eng. A, 2009, vol. 526, pp. 219–24.

    Article  Google Scholar 

  42. M.J. Starink, X.G. Qiao, J. Zhang, and N. Gao: Acta Mater., 2009, vol. 57, pp. 5796–5811.

    Article  Google Scholar 

  43. K. Colligan: Weld. J., 1999, vol. July, pp. 229s–37s.

  44. J.A. Schneider and A.C. Nunes Jr.: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 777–83.

    Article  Google Scholar 

  45. M. Guerra, C. Schmidt, J.C. McClure, L.E. Murr, and A.C. Nunes: Mater. Charact., 2002, vol. 49, pp. 95–101.

    Article  Google Scholar 

  46. M.N. Avettand-Fènoël, A. Simar, R. Shabadi, R. Taillard, and B. de Meester: 9th International Symposium on Friction Stir Welding, May 2012, Huntsville, United States.

  47. M. Salehi, H. Farnoush, and J.A. Mohandesi: Mater. Des., 2014, vol. 63, pp. 419–26.

    Article  Google Scholar 

  48. R.S. Mishra and Z.Y. Ma: Mater. Sci. Eng. R, 2005, vol. 50, pp. 1–78.

    Article  Google Scholar 

  49. M. Azizieh, A.H. Kokabi, and P. Abachi: Mater. Des., 2011, vol. 32, pp. 2034–41.

    Article  Google Scholar 

  50. T.R. McNelley, S. Swaminathan, and J.Q. Su: Scripta Mater., 2008, vol. 58, pp. 349–54.

    Article  Google Scholar 

  51. M.N. Avettand-Fènoël, A. Simar, R. Shabadi, R. Taillard, and B. de Meester: Mater. Des., 2014, vol. 60, pp. 343–57.

    Article  Google Scholar 

  52. J.F. Guo, J. Liu, C.N. Sun, S. Maleksaeedi, G. Bi, M.J. Tan, and J. Wei: Mater. Sci. Eng. A, 2014, vol. 602, pp. 143–49.

    Article  Google Scholar 

  53. R.D. Doherty, M.E. Kassner, D.A. Hughes, W.E. King, F.J. Humphreys, T.R. McNelley, J.J. Jonas, H.J. McQueen, D.J. Jensen, and A.D. Rollett: Mater. Sci. Eng. A, 1997, vol. 238, pp. 219–74.

    Article  Google Scholar 

  54. C.I. Chang, C.J. Lee, and J.C. Huang: Scripta Mater., 2004, vol. 51, pp. 509–14.

    Article  Google Scholar 

  55. L.P. Troeger and E.A. Starke Jr: Mater. Sci. Eng. A, 2000, vol. 293, pp. 19–29.

    Article  Google Scholar 

  56. M. Amirizad, A.H. Kokabi, M.A. Gharacheh, R. Sarrafi, B. Shalchi, and M. Azizieh: Mater. Lett., 2006, vol. 60, pp. 565–68.

    Article  Google Scholar 

  57. D.-H. Choi, Y.-I. Kim, D.-U. Kim, and S.-B. Jung: Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 614–18.

    Article  Google Scholar 

  58. D.J. Lloyd: Int. Mater. Rev., 1994, vol. 39, pp. 1–24.

    Article  Google Scholar 

Download references

Acknowledgment

The authors wish to thank the research board of Sharif University of Technology for the financial support and the provision of the research facilities used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kazeminezhad.

Additional information

Manuscript submitted September 15, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorrami, M.S., Kazeminezhad, M. & Kokabi, A.H. Influence of Stored Strain on Fabricating of Al/SiC Nanocomposite by Friction Stir Processing. Metall Mater Trans A 46, 2021–2034 (2015). https://doi.org/10.1007/s11661-015-2776-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2776-9

Keywords

Navigation