Skip to main content
Log in

Preparation and Properties of Porous Fe-Al-x%TiC Composite Material

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Fe-Al-x%TiC composite porous materials were synthesized by the reaction of Fe+Al+TiC mixed powder. By adding a certain proportion of TiC to try to control the self-propagating high-temperature synthesis (SHS) reactions of Fe and Al during the sintering process, the effects of adding TiC on the porosity, phase, and oxidation resistance of Fe-Al-based porous materials were studied. The results showed that the porosity of Fe-Al-x%TiC green compacts increased from 22.83 to 24.89% with an increase in the proportion of TiC, and TiC did not affect the phase change during the sintering process. In the DSC curve, after the addition of TiC, the temperature of the exothermic peak of Fe and Al increased during the sintering process, proving that the reaction between Fe and liquid Al is delayed. When TiC was 4 and 6 wt.%, an endothermic peak appeared when Al melted, which further showed that the SHS reaction was suppressed. In addition, the porous Fe-Al-x%TiC composite sintered at 1000 °C has better oxidation resistance and decreases with increasing TiC content, while the compression resistance increases with increasing TiC content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Sina, J. Corneliusson, K. Turba and S. Iyengar, A Study on the Formation of Iron Aluminide (FeAl) from Elemental Powders, J. Alloy Compd., 2015, 636, p 261–269.

    Article  CAS  Google Scholar 

  2. J.H. Choi, I.S. Ahn, Y.C. Bak, S.Y. Bae, S.J. Ha and H.J. Jang, Preparation of High Porous Metal Filter Element for the Fail-Safety Function, Powder Technol., 2004, 140, p 98–105.

    Article  CAS  Google Scholar 

  3. E.C. Hammel, L.R. Ighodaro and O.I. Okoli, Processing and Properties of Advanced Porous Ceramics: An Application Based Review, Ceram. Int., 2014, 40(10), p 15351–15370.

    Article  CAS  Google Scholar 

  4. L. Lefebvre, J. Banhart and D.C. Dunand, Porous Metals and Metallic Foams: Current Status and Recent Developments, Adv. Eng. Mater., 2008, 10(9), p 775–787.

    Article  CAS  Google Scholar 

  5. X. Cai, Y. Liu, P. Feng, X. Jiao, L. Zhang and J. Wang, Fe-Al Intermetallic Foam with Porosity Above 60 % Prepared by Thermal Explosion, J. Alloy Compd., 2017, 732, p 443–447.

    Article  Google Scholar 

  6. S. Azem, M. Nechiche and K. Taibi, Development of Copper Matrix Composite Reinforced with FeAl Particles Produced by Combustion Synthesis, Powder Technol., 2011, 208(2), p 515–520.

    Article  CAS  Google Scholar 

  7. Q. Wang, X. Leng, T. Yang and J. Yan, Effects of Fe-Al Intermetallic Compounds on Interfacial Bonding of Clad Materials, Trans. Nonferrous Metal. Soc., 2014, 24(1), p 279–284.

    Article  CAS  Google Scholar 

  8. E. Poche, S.A.J. Wiak, K. Karczewski and Z. Bojar, Fe–Al Phase Formation Around SHS Reactions under Isothermal Conditions, J. Alloy Compd., 2011, 509(4), p 1124–1128.

    Article  Google Scholar 

  9. M. Amaya, M.A. Espinosa-Medina, J. Porcayo-Calderon, L. Martinez and J.G. Gonzalez-Rodriguez, High Temperature Corrosion Performance of FeAl Intermetallic Alloys in Molten Salts, Mater. Sci. Eng. A, 2003, 349, p 12–19.

    Article  Google Scholar 

  10. C. Xiaoping, L. Yanan, W. Xiaohong, J. Xinyang, W. Jianzhong, A. Farid and F. Peizhong, Oxidation Resistance of Highly Porous Fe-Al Foams Prepared by Thermal Explosion, Metall. Mater. Trans. A, 2018, 49, p 3683–3691.

    Article  Google Scholar 

  11. H. Gao, Y. He, P. Shen, J. Zou, N. Xu, Y. Jiang, B. Huang and C.T. Liu, Porous FeAl Intermetallics Fabricated by Elemental Powder Reactive Synthesis, Intermetallics, 2009, 17(12), p 1041–1046.

    Article  CAS  Google Scholar 

  12. M. Łazińska, T. Durejko, S. Lipiński, W. Polkowski, T. Czujko and R.A. Varin, Porous Graded FeAl Intermetallic Foams Fabricated by Sintering Process Using NaCl Space Holders, Mater. Sci. Eng. A, 2015, 636, p 407–414.

    Article  Google Scholar 

  13. H.Y. Gao, Y.H. He, P.Z. Shen, Y. Jiang and C.T. Liu, Effect of Pressure on Pore Structure of Porous FeAl Intermetallics, Adv. Powder Technol., 2015, 26(3), p 882–886.

    Article  CAS  Google Scholar 

  14. H.Y. Gao, Y.H. He, J. Zou, P.Z. Shen, Y. Jiang and C.T. Liu, Mechanical Properties of Porous Fe–Al Intermetallics, Powder Metall., 2014, 58(3), p 197–201.

    Article  Google Scholar 

  15. H. Gao, W. Xie, H. Zhang, W. Shen, Y. He, Modification of the Reactive Synthesis of Porous FeAl with Addition of Si. Materials at High Temperatures., 2018. https://doi.org/10.1080/09603409.2018.1439683

  16. H.Y. Gao, Y.H. He, J. Zou, N.P. Xu and C.T. Liu, Pore Structure Control for Porous FeAl Intermetallics, Intermetallics, 2013, 32, p 423–428.

    Article  CAS  Google Scholar 

  17. Y.N. Liu, Z. Sun, X.P. Cai, X.Y. Jiao and P.Z. Feng, Fabrication of Porous FeAl-Based Intermetallics via Thermal Explosion, Trans. Nonferrous Metal. Soc., 2018, 28(6), p 1141–1148.

    Article  CAS  Google Scholar 

  18. D.E. Alman and R.D. Govier, Influence of Al Additions on the Reactive Synthesis of MoSi2, Scr. Mater., 1996, 34(8), p 1287–1293.

    Article  Google Scholar 

  19. M. Chojnacki, S. Jóźwiak, K. Karczewski and Z. Bojar, Modification of Fe and Al Elemental Powders’ Sintering with Addition of Magnesium and Magnesium Hydride, Intermetallics, 2011, 19(10), p 1555–1562.

    Article  CAS  Google Scholar 

  20. K. Karczewski, S. Jówiak, M. Chojnacki and Z. Bojar, The Influence of Different Additives on the Kinetics of Self-Propagating High-Temperature Synthesis during the Sintering Process of Fe and Al Elemental Powders, Intermetallics, 2010, 18(7), p 1401–1404.

    Article  CAS  Google Scholar 

  21. H. Zhang, W. Xie, H. Gao, W. Shen and Y. He, Suppression of the SHS Reactions during Synthesis of Porous FeAl Intermetallics by Introducing Silicon, J. Alloy Compd., 2018, 735, p 1435–1438.

    Article  CAS  Google Scholar 

  22. P. Novák, V. Knotek, J. Šerák, A. Michalcová and D. Vojtěch, Synthesis of Fe–Al–Si Intermediary Phases by Reactive Sintering, Powder Metall., 2011, 54(2), p 167–171.

    Article  Google Scholar 

  23. J.J. Moore and H.J. Feng, Combustion Synthesis of Advanced Materials, Prog. Mater. Sci., 1995, 39(4–5), p 243–273.

    Article  CAS  Google Scholar 

  24. B. Tozkoparan, B. Dikici, M. Topuz, F. Bedir and M. Gavgali, Al-5Cu/B4Cp Composites: The Combined Effect of Artificially Aging (T6) and Particle Volume Fractions on the Corrosion Behaviour, Adv. Powder Technol., 2020, 31(7), p 2833–2842.

    Article  CAS  Google Scholar 

  25. R. Ekici and E. Kosedag, Comparison of the Low-Velocity Impact Behaviors of SIC and Pumice Particle-Reinforced Metal Matrix Composites, Int. J. Mech. Prod. Eng., 2017, 5(10), p 101–105.

    Google Scholar 

  26. E. Kosedag and R. Ekici, Low-Velocity Impact Performance of B4C Particle-Reinforced Al 6061 Metal Matrix Composites, Mater. Res. Express, 2019, 6(12), Article no. 126556.

    Article  Google Scholar 

  27. F. Quncheng, C. Huifen and J. Zhihao, Effects of Particle Size of Reactant on Characteristics of Combustion Synthesis of TiC-Fe Cermet, J. Mater. Sci., 2002, 37, p 2251–2257.

    Article  Google Scholar 

  28. Y. Jiang, Y.H. He, N.P. Xu, J. Zou, B.Y. Huang and C.T. Liu, Effects of the Al Content on Pore Structures of Porous Ti–Al Alloys, Intermetallics, 2008, 16(2), p 327–332.

    Article  CAS  Google Scholar 

  29. C. Xu, L. Chen, C. Zheng, H. Zhang, C. Zhao, Z. Wang, S. Lu, J. Zhang and L. Zhang, Improved Wear and Corrosion Resistance of Microarc Oxidation Coatings on Ti–6Al–4V Alloy with Ultrasonic Assistance for Potential Biomedical Applications, Adv. Eng. Mater., 2021, 23(4), Article no. 2001433.

    Article  CAS  Google Scholar 

  30. P. Sang, L. Chen, C. Zhao, Z. Wang, H. Wang, S. Lu, D. Song, J. Xu and L. Zhang, Particle Size-Dependent Microstructure, Hardness and Electrochemical Corrosion Behavior of Atmospheric Plasma Sprayed NiCrBSi Coatings, Metals, 2019, 9(12), Article no. 1342.

    Article  CAS  Google Scholar 

  31. M. Fan, B. Jianbin, High temperature oxidation resistance of Fe3Al/TiC composites. Journal of Sanmenxia Polytechnic., 2003, (02), p 64–66. (in Chinese)

  32. C. Moral and A. Bautista, Thermogravimetric Study of the Oxidation Behaviour of Sintered Stainless Steels: Influence of Powder Size and Composition, Mater. Sci. Forum., 2012, 727–728, p 108–113.

    Article  Google Scholar 

  33. A. Scherf, D. Janda, M.B. Yazdi, X. Li, F. Stein and M. Heilmaier, Oxidation Behavior of Binary Aluminium-Rich Fe–Al Alloys with a Fine-Scaled, Lamellar Microstructure, Oxid. Met., 2015, 83(5–6), p 559–574.

    Article  CAS  Google Scholar 

  34. J. Cebulski and S. Lalik, Kinetics of Corrosion Processes of Alloy on the Intermetallic Phase Matrix FeAl in High Temperature in Air Atmosphere, Solid State Phenom., 2014, 212, p 137–140.

    Article  Google Scholar 

  35. H.Y. Gao, Y.H. He, P.Z. Shen, J. Zou, N.P. Xu, Y. Jiang, B.Y. Huang and C.T. Liu, Effects of Al Content on Porous Fe-Al alloys, Powder Metall., 2009, 52(2), p 158–163.

    Article  CAS  Google Scholar 

  36. F.X. Liu, L. Yong, B.Y. Huang, Y.H. He and K.C. Zhou, Fabrication of FeAl/TiC Composites through Reactive Hot Pressing, J. Cent. South Univ., 2004, 11(4), p 343–347. (in Chinese)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 51704255), the City-University (Nanchong City-Southwest Petroleum University) Science and Technology Strategic Cooperation Project (SXQHJH055 and SXHZ054) and Key Laboratory of Oil and Gas Field Materials in Sichuan Province Colleges and Universities (X151521KCL05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bensheng Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, X., Huang, B., Xie, Y. et al. Preparation and Properties of Porous Fe-Al-x%TiC Composite Material. J. of Materi Eng and Perform 31, 8596–8604 (2022). https://doi.org/10.1007/s11665-022-06835-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06835-z

Keywords

Navigation