Skip to main content

Advertisement

Log in

Laser Sintered Ti-6Al-4V Alloy Coated with Plasma Electrolytic Oxidation: Influence of Duty Cycle and Frequency on Morphological, Structural, and Corrosion Properties

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of electrical process parameters like frequency and duty cycle on structural, morphological, and corrosion behaviour of nanocrystalline ceramic oxide coatings developed by plasma electrolytic oxidation (PEO) with pulsating DC power on laser sintered Ti-6Al-4V alloy is investigated in this study. Samples were coated with different combinations of frequency (1 kHz and 50 Hz) and duty cycle (90 and 20%). XRD patterns affirm that the coatings are predominantly comprised of anatase and rutile phases. The SEM analysis shows significant variation in pore size (2-10 µm) and thickness of coatings (10.1-13.2 µm). The high-frequency PEO coating exhibited a smoother surface. Overall, the findings suggest that duty cycle and frequency considerably impact pore morphology, surface roughness, and corrosion behaviour of laser sintered Ti-6Al-4V alloy coatings. The sample treated with 90% duty cycle and 1 kHz frequency reported three folds increase in corrosion resistance than the uncoated substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Peters, J. Kumpfert, C.H. Ward and C. Leyens, Titanium Alloys for Aerospace Applications, Titanium and Titanium Alloys. C. Leyans, M. Peters Ed., Wiley, Weinheim, 2003, p 333–349

    Google Scholar 

  2. G. Lutjering and J.C. Williams, Titanium, 2nd ed. Springer, Berlin, 2007.

    Google Scholar 

  3. M.J. Donachie Jr., Titanium: A Technical Guide, ASM international, Ohio, 2000.

    Book  Google Scholar 

  4. S. Kumar and A. Mandal, Laser Cladding of Titanium Alloys, Laser Cladding of Metals. P. Cavaliere Ed., Springer, Switerzerland, 2021, p 215–238

    Chapter  Google Scholar 

  5. R. Konečná, L. Kunz, A. Bača and G. Nicoletto, Resistance of Direct Metal Laser Sintered Ti6Al4V Alloy Against Growth of FATIGUE CRACKS, Eng. Fract. Mech., 2017, 185, p 82–91.

    Article  Google Scholar 

  6. Z. Yang, Y. Xu, R.D. Sisson and J. Liang, Factors Influencing the Corrosion Behavior of direct Metal Laser Sintered Ti-6Al-4V for biomedical applications, J. Mater. Eng. Perform., 2020, 29, p 3831–3839.

    Article  CAS  Google Scholar 

  7. V.N. Moiseyev, Titanium Alloys: Russian aircraft and Aerospace applications, CRC Press, Newyork, 2006.

    Google Scholar 

  8. I. Smokovych, M. Scheffler, S. Li and B. Yao, New-Type Oxidation Barrier Coatings for Titanium Alloys, Adv. Eng. Mater., 2020, 22, p 1901224.

    Article  CAS  Google Scholar 

  9. D. Pavlenko, Y. Dvirnyk and R. Przysowa, Advanced Materials and Technologies for Compressor BLADES of Small Turbofan Engines, Aerospace, 2021, 8, p 1–16.

    Article  Google Scholar 

  10. G.D. Revankar, R. Shetty, S. Srinivasarao and V.N. Gaithonde, Wear Resistance Enhancement of Titanium Alloy (Ti-6Al-4V) by Ball Burnishing Process, J. Mater. Res. Technol., 2017, 6(1), p 13–32.

    Article  CAS  Google Scholar 

  11. K. Aniolek, A. Barylski and M. Kupka, Friction and Wear of Oxide Scale Obtained on Pure Titanium after High-Temperature Oxidation, Materials., 2021, 14, p 3764.

    Article  CAS  Google Scholar 

  12. J. Dai, J. Zhu, C. Chen and F. Weng, High Temperature Oxidation Behavior and Research Status of Modifications on Improving High Temperature Oxidation Resistance of Titanium Alloys And Titanium Aluminides: A Review, J. Alloys Compd., 2016, 685, p 784–798.

    Article  CAS  Google Scholar 

  13. L.C. Zhang, L.Y. Chen and L. Wang, Surface Modification of Titanium and Titanium Alloys: Technologies, Developments, and Future Interests, Adv. Eng. Mater., 2020, 2020(22), p 1901258.

    Article  Google Scholar 

  14. M. Dominik, A. Leśniewski, M. Janczuk, J.N. Jönsson, M. Hołdyński, Ł Wachnicki, M. Godlewski, W.J. Bock and M. Śmietana, Titanium Oxide Thin Films Obtained with Physical and Chemical Vapour Deposition Methods for Optical Biosensing Purposes, Biosens. Bioelectron., 2017, 93, p 102–109.

    Article  CAS  Google Scholar 

  15. X. Li, C. Dong, Q. Zhao, Y. Pang, F. Cheng and S. Wang, Characterization of Microstructure and Wear Resistance of PEO Coatings Containing Various Microparticles on Ti6Al4V Alloy, J. Mater. Eng. Perform., 2018, 27, p 1642–1653.

    Article  CAS  Google Scholar 

  16. P. Gkomoza, G.S. Lampropoulos, M. Vardavoulias, D.I. Pantelis, P.N. Karakizis and Ch. Sarafoglou, Microstructural Investigation of Porous Titanium Coatings, Produced by Thermal Spraying Techniques, Using Plasma Atomisation and Hydridedehydride Powders, for Orthopedic Implants, Surf. Coat. Technol., 2019, 357, p 947–956.

    Article  CAS  Google Scholar 

  17. C.S. Chen, J.H. Chang, V. Srimaneepong, J.Y. Wen, O.H. Tung, C.H. Yang, H.C. Lin, T.H. Lee, Y. Han and H.H. Huang, Improving the In Vitro Cell Differentiation and In Vivo Osseointegration of Titanium Dental Implant Through Oxygen Plasma Immersion Ion Implantation Treatment, Surf. Coat. Technol., 2020, 399, p 126125.

    Article  CAS  Google Scholar 

  18. X. Lu, M. Mohedano, C. Blawert, E. Matykina, R. Arrabal, K.U. Kainer and M.L. Zheludkevich, Plasma Electrolytic Oxidation Coatings with Particle Additions: A Review, Surf. Coat. Technol., 2016, 307, p 1165–1182.

    Article  CAS  Google Scholar 

  19. C. Premchand, S. Hariprasad, A. Saikiran, E. Lokeshkumar, P. Manojkumar, B. Ravisankar, B. Venkataraman and N. Rameshbabu, Assessment of Corrosion and Scratch Resistance of Plasma Electrolytic Oxidation and Hard Anodized Coatings Fabricated on AA 7075-T6, Trans. Indian Inst. Met., 2021, 74(8), p 991–2002.

    Article  Google Scholar 

  20. E. Ramakrishnan, C. Premchand, P. Manojkumar and N. Rameshbabu, Development of Thermal Control Coatings on AA7075 by Plasma Electrolytic Oxidation (PEO) Process, Mater. Today: Proc., 2021, 46, p 1085–1090.

    CAS  Google Scholar 

  21. S. Ahmadnia, S. Aliasghari and M. Ghorbani, Improved Electrochemical Performance of Plasma Electrolytic Oxidation Coating on Titanium in Simulated Body Fluid, J. Mater. Eng. Perform., 2019, 28, p 4120–4127.

    Article  CAS  Google Scholar 

  22. S. Hariprasad, A. Saikiran, C. Premchand, L. Ramakrishna and N. Rameshbabu, Fabrication of Ceramic Coatings on the Biodegradable ZM21 Magnesium Alloy by PEO Coupled EPD Followed by Laser Texturing Process, J. Magnes. Alloy., 2021, 9, p 910–926.

    Article  Google Scholar 

  23. E. Lokeshkumar, P. Manojkumar, A. Saikiran, C. Premchand, S. Hariprasad, L. Ramakrishna and N. Rameshbabu, Fabrication of Ca and P Containing Niobium Oxide Ceramic Coatings on Niobium by PEO COUPLED EPD Process, Surf. Coat. Technol., 2021, 416, p 127161.

    Article  Google Scholar 

  24. D. Madhuri, R. Ghosh, M.A. Hasan, A. Dey, A.M. Pillai, K.S. Anantharaju and A. Rajendra, Development and Characterization of High Emittance and Low-Thickness Plasma Electrolytic Oxidation Coating on Ti6Al4V for Spacecraft Application, J. Mater. Eng. Perform., 2021, 30, p 4072–4082.

    Article  CAS  Google Scholar 

  25. J.J. Zhuang, R.G. Song, N. Xiang, Y. Xiong and Q. Hu, Effect of Current Density on Microstructure and Properties of PEO Ceramic Coatings on Magnesium Alloy, Surf. Eng., 2017, 33, p 744–752.

    Article  CAS  Google Scholar 

  26. Y.K. Qin, D.S. Xiong, J.L. Li and R. Tyagi, Compositions and Tribological Properties of PEO Coatings on Ti6Al4V Alloy, Surf. Eng., 2017, 33, p 895–902.

    CAS  Google Scholar 

  27. C.L. Chang, G.J. Luo, F.C. Yang and J.F. Tang, Effects of Duty Cycle on Microstructure of TiN Coatings Prepared Using CAE/HiPIMS, Vacuum, 2021, 192, p 110449.

    Article  CAS  Google Scholar 

  28. L. An, M.A. Ying, X. Yan, W. Sheng and Z. Wang, Effects of Electrical Parameters and their Interactions on Plasma Electrolytic Oxidation Coatings on Aluminum Substrates, Trans. Nonferrous Met. Soc. China., 2020, 30, p 883–895.

    Article  CAS  Google Scholar 

  29. R. Bahador, N. Hosseinabadi and A. Yaghtin, Effect of Power Duty Cycle on Plasma Electrolytic Oxidation of A356-Nb2O5 Metal Matrix Composites, J. Mater. Eng. Perform., 2021, 30, p 2586–2604.

    Article  CAS  Google Scholar 

  30. N.A. Baseri, M. Mohammadi, M. Ghatee, M.A. Firouzjah and H. Elmkhah, The Effect of Duty Cycle on the Mechanical and Electrochemical Corrosion Properties of Multilayer CrN/CrAlN Coatings Produced by Cathodic Arc Evaporation, Surf. Eng., 2021, 37(2), p 253–262.

    Article  CAS  Google Scholar 

  31. Y. Zhao, N. Ye, H. Zhuo, C. Wei, W. Zhou, J. Mao and J. Tang, Influence of Pulse Current Forward-Reverse Duty Cycle on Structure and Performance of Electroplated W-Cu Composite Coatings, Materials, 2021, 14, p 1233.

    Article  CAS  Google Scholar 

  32. K. Venkateswarlu, S. Suresh, N. Rameshbabu, A.C. Bose and S. Subramanian, Effect of Electrolyte Chemistry on the Structural, Morphological and Corrosion Characteristics of Titania Films Developed on Ti-6Al-4V Implant Material by Plasma Electrolytic Oxidation, Key Eng. Mater., 2012, 493, p 436–441.

    Google Scholar 

  33. Gh.B. Darband, M. Aliofkhazraei, P. Hamghalam and N. Valizade, Plasma Electrolytic Oxidation of MAGNESIUM and Its Alloys: Mechanism, Properties and Applications, J. Magnes. Alloy., 2017, 5, p 74–132.

    Article  Google Scholar 

  34. A. Saikiran, S. Hariprasad, S. Arun, K.L. Rama and N. Rameshbabu, Effect of Electrolyte Composition on Morphology and Corrosion Resistance of Plasma Electrolytic Oxidation Coatings on Aluminized steel, Surf. Coat. Technol., 2019, 372, p 239–251. https://doi.org/10.1016/j.surfcoat.2019.05.047

    Article  CAS  Google Scholar 

  35. J. He, Y. Du, Y. Bai, J. An, X. Cai, Y. Chen and P. Wang, Facile Formation of Anatase/Rutile TiO2 Nanocomposites with Enhanced Photocatalytic Activity, Molecules, 2019, 24, p 2996.

    Article  CAS  Google Scholar 

  36. K. He, N. Chen, C. Wang, L. Wei and J. Chen, Method for Determining Crystal Grain Size by x-ray Diffraction, Cryst. Res. Technol., 2018, 53(2), p 1700157. https://doi.org/10.1002/crat.201700157

    Article  CAS  Google Scholar 

  37. D.A.H. Hanaor and C.C. Sorrell, Review of the Anatase to Rutile Phase Transformation, J. Mater. Sci., 2011, 46, p 855–874.

    Article  CAS  Google Scholar 

  38. M. Rahmati, K. Raeissi, M.R. Toroghinejad, A. Hakimizad and M. Santamaria, Effect of Pulse Current Mode on Microstructure, Composition and Corrosion Performance of the Coatings Produced by Plasma Electrolytic Oxidation on AZ31 Mg Alloy, Coatings, 2019, 9, p 688.

    Article  CAS  Google Scholar 

  39. X. Dai, C. Wen, L. Wu, L. Liu, Y. Wu, X. Ding, J. Wu, W. Ci, A. Tang and F. Pan, Influences of Pulse Frequency on Formation and Properties of Composite Anodic Oxide Films on Ti-10V-2Fe-3Al Alloy, Chin. J. Aeronaut., 2021, 34(11), p 228–242.

    Article  Google Scholar 

  40. V. Dehnavi, X.Y. Liu, B.L. Luan, D.W. Shoesmith and S. Rohani, Phase Transformation in Plasma Electrolytic Oxidation Coatings on 6061 Aluminum Alloy, Surf. Coat. Technol., 2014, 251, p 106–114.

    Article  CAS  Google Scholar 

  41. S. Parvate, P. Dixit and S. Chattopadhyay, Superhydrophobic Surfaces: Insights from THEORY and Experiment, J. Phys. Chem. B., 2020, 124, p 1323–1360.

    Article  CAS  Google Scholar 

  42. M. Sandhyarani, N. Rameshbabu, K. Venkateswarlu and L. Rama-Krishna, Fabrication, Characterization and In-Vitro Evaluation of Nanostructured Zirconia/Hydroxyapatite Composite Film on Zirconium, Surf. Coat. Technol., 2014, 238, p 58–67.

    Article  Google Scholar 

  43. J.Y. Lim, X. Lui, E.A. Vogler and H.J. Donahue, Systematic Variation in Osteoblast Adhesion and Phenotype with Substratum Surface Characteristics, J. Biomed. Mater. Res., 2004, 68A, p 504–512.

    Article  CAS  Google Scholar 

  44. E.A. Vogler, Structure and Reactivity of Water at Biomaterial Surfaces, Adv. Colloid Interface Sci., 1998, 74, p 69–117.

    Article  CAS  Google Scholar 

  45. Z. Shahri, S.R. Allahkaram, R. Soltani and H. Jafari, Optimisation of Plasma Electrolyte Oxidation Process Parameters for Corrosion Resistance of Mg Alloy, J. Magnes. Alloy., 2020, 8, p 431–440.

    Article  CAS  Google Scholar 

  46. R. Ramachandran and M. Nosonovsky, Coupling of Surface Energy with Electric Potential Makes Superhydrophobic Surfaces Corrosion-Resistant, Phys. Chem. Chem. Phys., 2015, 17, p 24988–24997.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author (NRB) would also like to thank and acknowledge the financial support received from the Defence Research & Development Organisation (DRDO), New Delhi (No. EMR/2016/003259 dated 22-03-2017) to carry out this research

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Rameshbabu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Premchand, C., Lokeshkumar, E., Manojkumar, P. et al. Laser Sintered Ti-6Al-4V Alloy Coated with Plasma Electrolytic Oxidation: Influence of Duty Cycle and Frequency on Morphological, Structural, and Corrosion Properties. J. of Materi Eng and Perform 31, 7955–7963 (2022). https://doi.org/10.1007/s11665-022-06810-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06810-8

Keywords

Navigation