Skip to main content
Log in

Effect of laser remelting on microstructure, salt spray corrosion and electrochemical performance of plasma sprayed CoCrFeNiMo HEA coating

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A plasma sprayed CoCrFeNiMo high-entropy alloy coating on Ti6Al4V alloy was processed by laser remelting, and the salt spray corrosion and electrochemical performances of obtained coatings were evaluated using a salt spray tester and electrochemical workstation. The results show that the corrosion mechanisms of plasma sprayed and laser remelted coatings are pitting corrosion + crevice corrosion and pitting corrosion + uniform corrosion, respectively, and the charge transfer resistance of laser remelted coating is higher than that of plasma sprayed coating. Moreover, the corrosion resistance of plasma sprayed coating is increased by laser remelting, which is contributed to the formation of passive films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Ding XP, Ma HL, Zhang Q, Yang J, Li DY, Fan SQ (2022) Effect of annealing heat treatment on microstructure and corrosion behavior of Ti6Al4V alloy fabricated by multi-laser beam wire-feed additive manufacturing in vacuum environment. J Alloys Compd 914:165363. https://doi.org/10.1016/j.jallcom.2022.165363

    Article  CAS  Google Scholar 

  2. Wang YJ, Hao EK, Zhao XQ, Xue Y, An YL, Zhou HD (2022) Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater. J Mater Sci Technol 100:169–181. https://doi.org/10.1016/j.jmst.2021.06.005

    Article  CAS  Google Scholar 

  3. Trojanova ZZK, Halemsova K, Drozed Z, Dzugan J, Valiev RZ, Podany P (2022) The influence of severe plastic deformation on the thermal expansion of additively manufactured Ti6Al4V alloy. J Mater Res Technol 19:3498–3506. https://doi.org/10.1016/j.jmrt.2022.06.097

    Article  CAS  Google Scholar 

  4. Shuo Y, Zou JJ, Lin NM, Zhang HX, Li DY, Wu YC (2022) Understanding the protective role of a gradient titanium oxide ceramic layer on Ti6Al4V against corrosion via analyses of Mott–Schottky curve and electron work function (EWF). Ceram Int 48:31896–31901. https://doi.org/10.1016/j.ceramint.2022.07.123

    Article  CAS  Google Scholar 

  5. Rong ZY, Wang CH, Wang Y, Dong ML, You Y, Wang JN, Liu HN, Liu JQ, Wang YH, Zhu ZY (2022) Microstructure and properties of FeCoNiCrX (X=Mn, Al) high-entropy alloy coatings. J Alloys Compd 921:166061. https://doi.org/10.1016/j.jallcom.2022.166061

    Article  CAS  Google Scholar 

  6. Wang T, Wang C, Li JJ, Chai LJ, Deng C, Luo J, Huang Y (2022) Microstructure and properties of laser-clad high entropy alloy coating on Inconel 718 alloy. Mater Charact 193:112314. https://doi.org/10.1016/j.matchar.2022.112314

    Article  CAS  Google Scholar 

  7. Dai GX, Wu SP, Huang XX (2022) Preparation process for high-entropy alloy coatings based on electroless plating and thermal diffusion. J Alloys Compd 902:163736. https://doi.org/10.1016/j.jallcom.2022.163736

    Article  CAS  Google Scholar 

  8. Deng GY, Tieu AK, Su LH, Wang P, Wang L, Lan XD, Cui SG, Zhu HT (2020) Investigation into reciprocating dry sliding friction and wear properties of bulk CoCrFeNiMo high entropy alloys fabricated by spark plasma sintering and subsequent cold rolling processes: role of Mo element concentration. Wear 460–46:1203440. https://doi.org/10.1016/j.wear.2020.203440

    Article  CAS  Google Scholar 

  9. Cheng KC, Chen JH, Stadler S, Chen SH (2019) Properties of atomized AlCoCrFeNi high-entropy alloy powders and their phase-adjustable coatings prepared via plasma spray process. Appl Surf Sci 478:478–486. https://doi.org/10.1016/j.apsusc.2019.01.203

    Article  CAS  Google Scholar 

  10. Meghwal A, Anupam A, Schulz C, Hall C, Murty BS, Kottada RS, Vijay R, Munroe P, Berndt CC, Ang ASM (2022) Tribological and corrosion performance of an atmospheric plasma sprayed AlCoCr0.5Ni high-entropy alloy coating. Wear 506–507:04443. https://doi.org/10.1016/j.wear.2022.204443

    Article  CAS  Google Scholar 

  11. Kear BH, Skandan G, Sadangi RK (2001) Factors controlling decarburization in HVOF sprayed nano-WC/Co hardcoatings. Scr Mater 44:1703–1707. https://doi.org/10.1016/S1359-6462(01)00867-3

    Article  CAS  Google Scholar 

  12. Cui KX, Li P, Zhao W, Liu C, Wan Q, Li SW, Qu XH (2022) Advancing knowledge of plasma spraying coatings for Li||Sb–Sn liquid metal batteries by X-ray micro-CT. Chin Chem Lett 8417:1001–1018. https://doi.org/10.1016/j.cclet.2022.107797

    Article  CAS  Google Scholar 

  13. Liu SH, Trelles JP, Li CJ, Li CX, Guo HB (2022) A review and progress of multiphase flows in atmospheric and low pressure plasma spray advanced coating. Mater Today Phys 27:100832. https://doi.org/10.1016/j.mtphys.2022.100832

    Article  Google Scholar 

  14. Li YZ, Hu YB, Zhang DZ, Cong WL (2023) Laser remelting of CoCrFeNiTi high entropy alloy coatings fabricated by directed energy deposition: effects of remelting laser power. Opt Laser Technol 158:108871. https://doi.org/10.1016/j.optlastec.2022.108871

    Article  CAS  Google Scholar 

  15. Chong K, Zou Y, Wu DT, Tang YW, Zhang YG (2021) Pulsed laser remelting supersonic plasma sprayed Cr3C2–NiCr coatings for regulating microstructure, hardness and corrosion properties. Surf Coat Technol 418:127258. https://doi.org/10.1016/j.surfcoat.2021.127258

    Article  CAS  Google Scholar 

  16. Sidhu BS (2012) 10—Laser surface remelting to improve the erosion–corrosion resistance of nickel–chromium–aluminium–yttrium (NiCrAlY) plasma spray coatings. Laser Surf Modif Alloys Corro Eros Resis 10:355–366. https://doi.org/10.1533/9780857095831.2.355

    Article  Google Scholar 

  17. Wu YC, Zhang ZY, Xu K, Dai XR, Zhu H, Ni T, Liu Y (2022) Amorphous Ni–P coating modified by laser remelting: the effect of remelted crystallization layer on microhardness and wear resistance. Tribol Int 176:107884. https://doi.org/10.1016/j.triboint.2022.107884

    Article  CAS  Google Scholar 

  18. Liu MX, Jiang H, Chang GR, Xu YY, Ma F, Xu KW (2022) Effect of laser remelting on corrosion and wear resistance of Fe82Cr16SiB alloy coatings fabricated by extreme high-speed laser cladding. Mater Lett 325:132823. https://doi.org/10.1016/j.matlet.2022.132823

    Article  CAS  Google Scholar 

  19. Niu ZZ, Wang YZ, Geng C, Xu J, Wang Y (2020) Microstructural evolution, mechanical and corrosion behaviors of as-annealed CoCrFeNiMox (x= 0, 0.2, 0.5, 0.8, 1) high entropy alloys. J Alloy Compd 820:153273. https://doi.org/10.1016/j.jallcom.2019.153273

    Article  CAS  Google Scholar 

  20. Brownlie F, Hodgkiess T, Fanicchia F (2021) Erosion–corrosion behaviour of CoCrFeNiMo0.85 and Al0.5CoCrFeNi complex concentrated alloys produced by laser metal deposition. Surf Coat Technol 423:127634. https://doi.org/10.1016/j.surfcoat.2021.127634

    Article  CAS  Google Scholar 

  21. Wang Q, Amar A, Jiang CL, Luan HW, Zhao SF, Zhang H, Le GM, Liu X, Wang XY, Yang XS, Li JF (2020) CoCrFeNiMo0.2 high entropy alloy by laser melting deposition: prospective material for low temperature and corrosion resistant applications. Intermetallics 119:106727. https://doi.org/10.1016/j.intermet.2020.106727

    Article  CAS  Google Scholar 

  22. Zhang FY, Wang LQ, Yan S, Yu GX, Chen JW, He JL, Yin FX (2022) Effect of Al content on microstructure and mechanical properties of atmosphere plasma sprayed AlxCoCrFeNi high-entropy alloy coatings under post-annealing. Surf Coat Technol 446(25):128804. https://doi.org/10.1016/j.surfcoat.2022.128804

    Article  CAS  Google Scholar 

  23. Chong ZZ, Sun YN, Cheng WJ, Huang LF, Han CY, Ma XF, Meng AC (2022) Laser remelting induces grain refinement and properties enhancement in high-speed laser cladding AlCoCrFeNi high-entropy alloy coatings. Intermetallics 150:107686. https://doi.org/10.1016/j.intermet.2022.107686

    Article  CAS  Google Scholar 

  24. Liu ZC, Kong DJ (2012) Structure and electrochemical corrosion properties of plasma-sprayed CoCrFeNiMo HEA coating in corrosive solutions. Corros Eng Sci Technol 57(8):730–739. https://doi.org/10.1080/1478422X.2022.2120945

    Article  Google Scholar 

  25. Wang YS, Yang G, Zhou SY, Sun C, Li BB, An D, Zhang SN, Xiu SC (2022) Effect of laser remelting on microstructure and mechanical properties of Ti-6Al-4V alloy prepared by inside-beam powder feeding. Mater Sci and Eng A 861(19):144266. https://doi.org/10.1016/j.msea.2022.144266

    Article  CAS  Google Scholar 

  26. Xiao JK, Wu YQ, Chen J, Zhang C (2020) Microstructure and tribological properties of plasma sprayed FeCoNiCrSiAlx high entropy alloy coatings. Wear 448–449:203209. https://doi.org/10.1016/j.wear.2020.203209

    Article  CAS  Google Scholar 

  27. Jin BQ, Zhang NN, Yin S (2022) Strengthening behavior of AlCoCrFeNi(TiN)x high-entropy alloy coatings fabricated by plasma spraying laser remelting. J Mater Sci Technol 121:163–173. https://doi.org/10.1016/j.jmst.2021.12.055

    Article  Google Scholar 

  28. Wu DJ, Guo MH, Ma GY, Niu FY (2015) Dilution characteristics of ultrasonic assisted laser clad yttria-stabilized zirconia coating. Mater Lett 141(15):207–209. https://doi.org/10.1016/j.matlet.2014.11.058

    Article  CAS  Google Scholar 

  29. Liu ZC, Kong DJ (2023) Microstructure, corrosive-wear and electrochemical properties of laser cladded CoCrFeNiMo–B4C coatings in 3.5%NaCl solution. Opt Laser Technol 159:108999. https://doi.org/10.1016/j.optlastec.2022.108999

    Article  CAS  Google Scholar 

  30. Sun Z, Zhang DH, Yan BX, Kong DJ (2018) Effects of laser remelting on microstructures and immersion corrosion performance of arc sprayed Al coating in 3.5% NaCl solution. Opt Laser Technol 99:282–290. https://doi.org/10.1016/j.optlastec.2017.09.013

    Article  CAS  Google Scholar 

  31. Zhang PR, Liu ZQ (2016) Physical–mechanical and electrochemical corrosion behaviors of additively manufactured Cr–Ni-based stainless steel formed by laser cladding. Mater Design 100:254–262. https://doi.org/10.1016/j.matdes.2016.03.151

    Article  CAS  Google Scholar 

  32. Yang JX, Wu FY, Bai B (2020) Effect of Cr additions on the microstructure and corrosion resistance of diode laser clad CuAl10 coating. Surf Coat Technol 381:125215. https://doi.org/10.1016/j.surfcoat.2019.125215

    Article  CAS  Google Scholar 

  33. Wang CM, Yu Y, Zhang H, Xu LX, Ma XY, Wang FF, Song BY (2021) Microstructure and corrosion properties of laser remelted CrFeCoNi and CrMnFeCoNi high entropy alloys coatings. J Mater Res Technol 15:5187–5196. https://doi.org/10.1016/j.jmrt.2021.10.042

    Article  CAS  Google Scholar 

  34. Yen CC, Lu HN, Tsai MH (2019) Corrosion mechanism of annealed equiatomic AlCoCrFeNi tri-phase high-entropy alloy in 0.5 M H2SO4 aerated aqueous solution. Corros Sci 157:462–471. https://doi.org/10.1016/j.corsci.2019.06.024

    Article  CAS  Google Scholar 

  35. Jiang D, Cui HZ, Chen H, Zhao XF, Ma GL, Song XJ (2021) Wear and corrosion properties of B4C-added CoCrNiMo high-entropy alloy coatings with in-situ coherent ceramic. Mater Des 210:110068. https://doi.org/10.1016/j.matdes.2021.110068

    Article  CAS  Google Scholar 

  36. Qiu XW (2019) Corrosion behavior of Al2CrFeCoxCuNiTi high-entropy alloy coating in alkaline solution and salt solution. Results Phys 12:1737–1741. https://doi.org/10.1016/j.rinp.2019.01.090

    Article  Google Scholar 

  37. Xu J, Peng S, Li ZY (2021) Remarkable cavitation erosion–corrosion resistance of CoCrFeNiTiMo high-entropy alloy coatings. Corros Sci 190:109663. https://doi.org/10.1016/j.corsci.2021.109663

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LZ contributed to methodology and writing—original draft preparation. KD contributed to supervision, reviewing and editing.

Corresponding author

Correspondence to Kong Dejun.

Ethics declarations

Conflict of interest

The authors have no relevant financial or nonfinancial interests to disclose.

Ethical approval

Not applicable.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhicheng, L., Chuang, H. & Dejun, K. Effect of laser remelting on microstructure, salt spray corrosion and electrochemical performance of plasma sprayed CoCrFeNiMo HEA coating. J Mater Sci 58, 10484–10500 (2023). https://doi.org/10.1007/s10853-023-08638-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08638-6

Navigation