Skip to main content
Log in

Microstructure, Mechanical Behavior, and Thermal Conductivity of Three-Dimensionally Interconnected Hexagonal Boron Nitride-Reinforced Cu-Ni Composite

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A powder metallurgy-based strategy to in situ construct a three-dimensionally interconnected hexagonal boron nitride (3Di-hBN) layers surrounding the grains of Cu-Ni matrix through metal–organic chemical vapor deposition process was utilized to fabricate 3Di-hBN-reinforced Cu0.7-Ni0.3 (3Di hBN-Cu-Ni) composite. The effect of 3Di-hBN on the mechanical properties of 3Di hBN-Cu-Ni composite was assessed by comparing with pure Cu-Ni alloy (without hBN) fabricated via powder metallurgy route under similar processing conditions. Uniaxial tensile investigations showed that 3Di-hBN positively influenced the mechanical properties of 3Di hBN-Cu-Ni composite;  ∼16.3, ∼11.67, and ∼27.9% higher yield strength, UTS, and fracture toughness, respectively, compared to PM Cu-Ni alloy. The overall improved performance of 3Di hBN-Cu-Ni composite was attributed to the formation of 3Di-hBN layers at the interfaces of Cu-Ni grains, which enable the composite to withstand the applied load through the mechanisms of load transfer, dislocation strengthening, and grain refinement. In addition, thermal conductivity of 3Di hBN-Cu-Ni composite was found ∼10% higher than that of pure Cu-Ni alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Ercetin and D.Y. Pimenov, Microstructure, Mechanical, and Corrosion Behavior of Al2O3 Reinforced Mg2Zn Matrix Magnesium Composites, Materials, 2021, 14(17), p 4819.

    Article  CAS  Google Scholar 

  2. M. Etaat, H. Pouraliakbar, G. Khalaj and M. Ghambari, Adhesion Strength Measurement of Nickel Layer on the Iron-Based P/M Parts Influenced by Different Surface Pre-Treatment Operations, Measurement, 2015, 66, p 204–211.

    Article  Google Scholar 

  3. J. Zhang, R.J. Perez and E.J. Lavernia, Documentation of Damping Capacity of Metallic, Ceramic and Metal-Matrix Composite Materials, J. Mater. Sci., 1993, 28(9), p 2395–2404.

    Article  CAS  Google Scholar 

  4. J.W. Kaczmar, K. Pietrzak and W. Włosiński, The Production and Application of Metal Matrix Composite Materials, J. Mater. Process. Technol., 2000, 106(1), p 58–67.

    Article  Google Scholar 

  5. S.P. Rawal, Metal-Matrix Composites for Space Applications, JOM, 2001, 53(4), p 14–17.

    Article  CAS  Google Scholar 

  6. S.K. Moheimani, M. Dadkhah and A. Saboori, Development of Novel AlSi10Mg Based Nanocomposites: Microstructure Thermal and Mechanical Properties, Metals, 2019, 9(9), p 1000.

    Article  CAS  Google Scholar 

  7. S. Cai, X. Chen, P. Liu, H. Zhou, S. Fu, K. Xu, S. Chen and D. Liang, Fabrication of Three-Dimensional Graphene/Cu-Ag Composites by In situ Chemical Vapor Deposition and Their Properties, J. Mater. Eng. Perform., 2020, 29(4), p 2248–2255.

    Article  CAS  Google Scholar 

  8. Z. Hu, G. Tong, D. Lin, C. Chen, H. Guo, J. Xu and L. Zhou, Graphene-Reinforced Metal Matrix Nanocomposites: A Review, Mater. Sci. Technol., 2016, 32(9), p 930–953.

    Article  CAS  Google Scholar 

  9. A.K. Kasar, G. Xiong and P.L. Menezes, Graphene-Reinforced Metal and Polymer Matrix Composites, JOM, 2018, 70(6), p 829–836.

    Article  CAS  Google Scholar 

  10. A.S. Wadhwa and A. Chauhan, An Overview of the Controllable Process Parameters in Mechanical Characterization of developed Hybrid Metal Matrix Composites and their Optimization for Advanced Engineering Applications, Mater. Today Proc., 2020, 28, p 1295–1301.

    Article  CAS  Google Scholar 

  11. X. Dong, J. Hu, H. Wang, S. Liu and Z. Guo, A Study on Carbon Concentration Distribution and Microstructure of P/M Materials Prepared by Carbusintering, J. Mater. Process. Technol., 2009, 209(8), p 3776–3782.

    Article  CAS  Google Scholar 

  12. A. El-Tantawy, W.M. Daoush and A.E. El-Nikhaily, Microstructure and Properties of BN/Ni-Cu Composites Fabricated by Powder Technology, J. Exp. Nanosci., 2018, 13(1), p 174–187.

    Article  CAS  Google Scholar 

  13. G. Miranda, P. Ferreira, M. Buciumeanu, A. Cabral, M. Fredel, F.S. Silva and B. Henriques, Microstructure, Mechanical and Wear Behaviors of Hot-Pressed Copper-Nickel-Based Materials for Diamond Cutting Tools, J. Mater. Eng. Perform., 2017, 26(8), p 4046–4055.

    Article  CAS  Google Scholar 

  14. Z. Trojanová, K. Dash, K. Máthis, P. Lukáč and A. Kasakewitsch, Elastic and Plastic Behavior of an Ultrafine-Grained Mg Reinforced with BN Nanoparticles, J. Mater. Eng. Perform., 2018, 27(6), p 3112–3121.

    Article  CAS  Google Scholar 

  15. A. Ercetin, Ö. Özgün and K. Aslantas, Investigation of Mechanical Properties of Mg5Sn-xZn Alloys Produced Through New Method in Powder Metallurgy, J. Test. Eval., 2021, 49(5), p 20200020.

    Article  Google Scholar 

  16. A. Ercetin, Application of the Hot Press Method to Produce New Mg Alloys: Characterization, Mechanical Properties, and Effect of Al Addition, J. Mater. Eng. Perform., 2021, 30(6), p 4254–4262.

    Article  CAS  Google Scholar 

  17. X. Wen and R. Joshi, 2D Materials-Based Metal Matrix Composites, J. Phys. D Appl. Phys, 2020, 53(42), p 423001.

    Article  CAS  Google Scholar 

  18. H. Pouraliakbar, A.H. Monazzah, R. Bagheri, S.S. Reihani, G. Khalaj, A. Nazari and M. Jandaghi, Toughness Prediction in Functionally Graded Al6061/SiCp Composites Produced by Roll-Bonding, Ceram. Int., 2014, 40(6), p 8809–8825.

    Article  CAS  Google Scholar 

  19. H. Pouraliakbar, A. Nazari, P. Fataei, A.K. Livary and M. Jandaghi, Predicting Charpy Impact Energy of Al6061/SiCp Laminated Nanocomposites in Crack Divider and Crack Arrester Forms, Ceram. Int., 2013, 39(6), p 6099–6106.

    Article  CAS  Google Scholar 

  20. J.R. Brockenbrough, S. Suresh and H.A. Wienecke, Deformation of Metal-Matrix Composites with Continuous Fibers: Geometrical Effects of Fiber Distribution and Shape, Acta Metall. Mater., 1991, 39(5), p 735–752.

    Article  CAS  Google Scholar 

  21. S. Farahmand, A.H. Monazzah and M.H. Soorgee, The Fabrication of Al2O3-Al FGM by SPS Under Different Sintering Temperatures: Microstructural Evaluation and Bending Behavior, Ceram. Int., 2019, 45(17), p 22775–22782.

    Article  CAS  Google Scholar 

  22. K. Chu and C. Jia, Enhanced Strength in Bulk Grapheme-Copper Composites, Physica Status Solidi, 2014, 211(1), p 184–190.

    Article  CAS  Google Scholar 

  23. A. Naseer, F. Ahmad, M. Aslam, B.H. Guan, W.S.W. Harun, N. Muhamad, M.R. Raza and R.M. German, A Review of Processing Techniques for Graphene-Reinforced Metal Matrix Composites, Mater. Manuf. Processes, 2019, 34(9), p 957–985.

    Article  CAS  Google Scholar 

  24. A.H. Monazzah, H. Pouraliakbar, R. Bagheri and S.M.S. Reihani, Al-Mg-Si/SiC Laminated Composites: Fabrication, Architectural Characteristics, Toughness, Damage Tolerance, Fracture Mechanisms, Compos. B Eng., 2017, 125, p 49–70.

    Article  CAS  Google Scholar 

  25. S.-R. Kawk, T.A. Ring and B.-S. Choi, A Simple Two-Step Fabrication Route for Cu Composite Reinforced by Three-Dimensional Graphene Network, J. Ind. Eng. Chem., 2019, 70, p 484–488.

    Article  CAS  Google Scholar 

  26. Y. Chen, X. Zhang, E. Liu, C. He, Y. Han, Q. Li, P. Nash and N. Zhao, Fabrication of Three-Dimensional Graphene/Cu Composite by in-situ CVD and its Strengthening Mechanism, J. Alloy. Compd., 2016, 688, p 69–76.

    Article  CAS  Google Scholar 

  27. S. Wang, S. Han, G. Xin, J. Lin, R. Wei, J. Lian, K. Sun, X. Zu and Q. Yu, High-Quality Graphene Directly Grown on Cu Nanoparticles for Cu-Graphene Nanocomposites, Mater. Des., 2018, 139, p 181–187.

    Article  CAS  Google Scholar 

  28. X. Li, T.A. Ring and B.-S. Choi, Thermal Conductivity of Three-Dimensionally Interconnected Graphene-Networked Cu Composite Fabricated by a Simple Two-Step Process, Korean J. Met. Mater., 2019, 57(8), p 529–534.

    Article  CAS  Google Scholar 

  29. Y. Jo, X. Li, D. Cho and B.-S. Choi, Tensile Properties of Three-Dimensionally Interconnected Graphene-Networked Cu Composite and Changes in its Microstructure in Relation to Heat Treatment Temperature, J. Adv. Eng. Technol., 2019, 12(02), p 091–095.

    Article  Google Scholar 

  30. X. Zhang, Y. Xu, M. Wang, E. Liu, N. Zhao, C. Shi, D. Lin, F. Zhu and C. He, A Powder-Metallurgy-Based Strategy Toward Three-Dimensional Graphene-Like Network for Reinforcing Copper Matrix Composites, Nat. Commun., 2020, 11(1), p 1–13.

    CAS  Google Scholar 

  31. S. Hu, M. Lozada-Hidalgo, F. Wang, A. Mishchenko, F. Schedin, R. Nair, E. Hill, D. Boukhvalov, M. Katsnelson and R. Dryfe, Proton Transport Through One-Atom-Thick Crystals, Nature, 2014, 516(7530), p 227–230.

    Article  CAS  Google Scholar 

  32. S.P. Singh, Effect of Hexa Boron Nitride and REO Addition on Wear and Corrosion Behavior of Hard-Facing on Mild Steel, 2018

  33. T. Natsuki and J. Natsuki, Prediction of Mechanical Properties for Hexagonal Boron Nitride Nanosheets Using Molecular Mechanics model, Appl. Phys. A, 2017, 123(4), p 283.

    Article  CAS  Google Scholar 

  34. O.A. Elkady, A. Abu-Oqail, E.M. Ewais and M. El-Sheikh, Physico-Mechanical and Tribological Properties of Cu/h-BN Nanocomposites Synthesized by PM Route, J. Alloy. Compd., 2015, 625, p 309–317.

    Article  CAS  Google Scholar 

  35. Z. Liu, Y. Gong, W. Zhou, L. Ma, J. Yu, J.C. Idrobo, J. Jung, A.H. MacDonald, R. Vajtai and J. Lou, Ultrathin High-Temperature Oxidation-Resistant Coatings of Hexagonal Boron Nitride, Nat. Commun., 2013, 4(1), p 1–8.

    Article  Google Scholar 

  36. X. Duan, Z. Yang, L. Chen, Z. Tian, D. Cai, Y. Wang, D. Jia and Y. Zhou, Review on the Properties of Hexagonal Boron Nitride Matrix Composite Ceramics, J. Eur. Ceram. Soc., 2016, 36(15), p 3725–3737.

    Article  CAS  Google Scholar 

  37. S. Rathinasabapathy, M. Santhosh, M. Asokan, Significance of Boron Nitride in Composites and Its Applications, Recent Advances in Boron-Containing Materialsed., IntechOpen, 2019.

  38. A.C. Reddy, Study of Factors Influencing Sliding Wear Behavior of Hexagonal Boron Nitride Reinforced AA6061 Metal Matrix Composites, 5th International Conference on Modern Materials and Manufacturing, Bangalore, 2013, pp 409–413.

  39. S. Gopinath, M. Prince and G. Raghav, Enhancing the Mechanical, Wear and Corrosion Behaviour of Stir Casted Aluminium 6061 Hybrid Composites Through the Incorporation of Boron Nitride and Aluminium Oxide Particles, Mater. Res. Exp., 2020, 7(1), p 016582.

    Article  CAS  Google Scholar 

  40. X. Li, T.A. Ring and B.-S. Choi, Thermal Conductivity of Three-Dimensionally Interconnected Graphene-Networked Cu Composite Fabricated by a Simple Two-Step Process, Korean J. Metals Mater., 2019, 57(8), p 529–534.

    Article  CAS  Google Scholar 

  41. Z. Hussain, H.-W. Yang and B.-S. Choi, Synthesis of Three-Dimensionally Interconnected Hexagonal Boron Nitride Networked Cu-Ni Composite, Korean J. Met. Mater., 2021, 59(7), p 505–513.

    Article  CAS  Google Scholar 

  42. M. Parvizi, A. Aladjem and J. Castle, Behaviour of 90-10 Cupronickel in Sea Water, Int. Mater. Rev., 1988, 33(1), p 169–200.

    Article  Google Scholar 

  43. P. Rojas, R. Vera, C. Martínez and M. Villarroel, Effect of the Powder Metallurgy Manufacture Process on the Electrochemical Behaviour of Copper, Nickel and Copper-Nickel Alloys in Hydrochloric Acid, Int. J. Electrochem. Sci, 2016, 11(4701), p e4711.

    Google Scholar 

  44. D. Roylance, Stress-Strain Curves, Massachusetts Institute of Technology study, Cambridge, 2001.

    Google Scholar 

  45. M. Khalaj, S. Zarabi Golkhatmi, S.A.A. Alem, K. Baghchesaraee, M. Hasanzadeh Azar and S. Angizi, Recent Progress in the Study of Thermal Properties and Tribological Behaviors of Hexagonal Boron Nitride-Reinforced Composites, J. Compos. Sci., 2020, 4(3), p 116.

    Article  CAS  Google Scholar 

  46. W. Parker, R. Jenkins, C. Butler and G. Abbott, Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity, J. Appl. Phys., 1961, 32(9), p 1679–1684.

    Article  CAS  Google Scholar 

  47. X. Hu, T. Björkman, H. Lipsanen, L. Sun and A.V. Krasheninnikov, Solubility of Boron, Carbon, and Nitrogen in Transition Metals: Getting Insight into Trends from First-Principles Calculations, J. Phys. Chem. Lett., 2015, 6(16), p 3263–3268.

    Article  CAS  Google Scholar 

  48. T.-A. Chen, C.-P. Chuu, C.-C. Tseng, C.-K. Wen, H.S.P. Wong, S. Pan, R. Li, T.-A. Chao, W.-C. Chueh, Y. Zhang, Q. Fu, B.I. Yakobson, W.-H. Chang and L.-J. Li, Wafer-Scale Single-Crystal Hexagonal Boron Nitride Monolayers on Cu (111), Nature, 2020, 579(7798), p 219–223.

    Article  CAS  Google Scholar 

  49. M. Hedayatian, K. Vahedi, A. Nezamabadi and A. Momeni, Microstructural and Mechanical Behavior of Al6061-Graphene Oxide Nanocomposites, Met. Mater. Int., 2020, 26(6), p 760–772.

    Article  CAS  Google Scholar 

  50. Y. Chen, X. Zhang, E. Liu, C. He, C. Shi, J. Li, P. Nash and N. Zhao, Fabrication of In-situ Grown Graphene Reinforced Cu Matrix Composites, Sci. Rep., 2016, 6(1), p 1–9.

    CAS  Google Scholar 

  51. S.C. Yoo, J. Kim, W. Lee, J.Y. Hwang, H.J. Ryu and S.H. Hong, Enhanced Mechanical Properties of Boron Nitride Nanosheet/Copper Nanocomposites via a Molecular-Level Mixing Process, Compos. Part B Eng., 2020, 195, p 108088.

    Article  CAS  Google Scholar 

  52. P. Madhukar, N. Selvaraj, G. Punugupati, G.V. Kumar, C. Rao and S. Mishra, Microstructure Studies of AA7150-hBN Nanocomposites Fabricated by Ultrasonic Assisted Stir Casting, Mater. Res. Exp., 2019, 6(11), p 116545.

    Article  CAS  Google Scholar 

  53. W. Yao and L. Fan, Effect of Defects on Mechanical Properties of Novel Hybrid Graphene-h-BN/Copper Layered Nanostructures, Appl. Phys. A, 2019, 125(9), p 663.

    Article  CAS  Google Scholar 

  54. D.-B. Xiong, M. Cao, Q. Guo, Z. Tan, G. Fan, Z. Li and D. Zhang, Graphene-and-Copper Artificial Nacre Fabricated by a Preform Impregnation Process: Bioinspired Strategy for Strengthening-Toughening of Metal Matrix Composite, ACS Nano, 2015, 9(7), p 6934–6943.

    Article  CAS  Google Scholar 

  55. K. Zhang, Y. Feng, F. Wang, Z. Yang and J. Wang, Two Dimensional Hexagonal Boron Nitride (2D-hBN): Synthesis, Properties and Applications, J. Mater. Chem. C, 2017, 5(46), p 11992–12022.

    Article  CAS  Google Scholar 

  56. R. Shu, X. Jiang, W. Liu, Z. Shao, T. Song and Z. Luo, Synergetic Effect of Nano-Carbon and HBN on Microstructure and Mechanical Properties of Cu/Ti3SiC2/C Nanocomposites, Mater. Sci. Eng., A, 2019, 755, p 128–137.

    Article  CAS  Google Scholar 

  57. R.E. Smallman and K.H. Westmacott, Stacking Faults in Face-Centred Cubic Metals and Alloys, Philosoph. Mag. J. Theor. Exp. Appl. Phys., 1957, 2(17), p 669–683.

    CAS  Google Scholar 

  58. S. Mustapha, M. Ndamitso, A. Abdulkareem, J. Tijani, D. Shuaib, A. Mohammed and A. Sumaila, Comparative Study of Crystallite Size Using Williamson-Hall and Debye-Scherrer Plots for ZnO Nanoparticles, Adv. Natural Sci. Nanosci. Nanotechnol., 2019, 10(4), p 045013.

    Article  Google Scholar 

  59. K. Chu, F. Wang, Y.-B. Li, X.-H. Wang, D.-J. Huang and H. Zhang, Interface Structure and Strengthening Behavior of Graphene/CuCr Composites, Carbon, 2018, 133, p 127–139.

    Article  CAS  Google Scholar 

  60. M. Kato, Hall-Petch Relationship and Dislocation Model for Deformation of Ultrafine-Grained and Nanocrystalline Metals, Mater. Trans., 2014, 55(1), p 19–24.

    Article  CAS  Google Scholar 

  61. M. Kostecki, T. Cygan, M. Petrus and J. Jaroszewicz, Thermal Properties of Multilayer Graphene and hBN Reinforced Copper Matrix Composites, J. Therm. Anal. Calorim., 2019, 138(6), p 3873–3883.

    Article  CAS  Google Scholar 

  62. B. Mortazavi, E.V. Podryabinkin, S. Roche, T. Rabczuk, X. Zhuang and A.V. Shapeev, Machine-Learning Interatomic Potentials enable First-Principles Multiscale Modeling of Lattice Thermal Conductivity in Graphene/Borophene Heterostructures, Mater. Horiz., 2020, 7(9), p 2359–2367.

    Article  Google Scholar 

  63. J.-C. Zheng, L. Zhang, A.V. Kretinin, S.V. Morozov, Y.B. Wang, T. Wang, X. Li, F. Ren, J. Zhang and C.-Y. Lu, High Thermal Conductivity of Hexagonal Boron Nitride Laminates, 2D Mater., 2016, 3(1), p 011004.

    Article  CAS  Google Scholar 

  64. H. Shen, C. Cai, J. Guo, Z. Qian, N. Zhao and J. Xu, Fabrication of Oriented hBN Scaffolds for Thermal Interface Materials, RSC Adv., 2016, 6(20), p 16489–16494.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Sang Choi.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, Z., Jang, H., Choi, H. et al. Microstructure, Mechanical Behavior, and Thermal Conductivity of Three-Dimensionally Interconnected Hexagonal Boron Nitride-Reinforced Cu-Ni Composite. J. of Materi Eng and Perform 31, 2792–2800 (2022). https://doi.org/10.1007/s11665-021-06450-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06450-4

Keywords

Navigation