Skip to main content
Log in

Effect of Graphene Nanoplatelets on Progressive Failure Behavior under Internal Pressure of Composite Cylindrical Pressure Vessels

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, burst behavior of filament winding basalt/epoxy composite cylindrical pressure vessels (B-CPVs) with 0.25 wt.% graphene nanoplatelets (GnPs) reinforced and non-reinforced [±55°]4 configurations was investigated for close-ended conditions. An innovative test apparatus was designed to obtain close-ended conditions. Internal pressure tests of the GnPs reinforced and non-reinforced B-CPVs were carried out following ASTM D1599 standard. Radial and axial displacements of reinforced and non-reinforced CPVs under the internal pressure were detected using linear position sensors. Elasticity moduli of reinforced and non-reinforced B-CPVs were determined for pressurized conditions. Burst failure pressure of the non-reinforced samples was found to be increased by 13.34%. The GnPs reinforcement increased the amount of strain that occurs in the radial and axial directions of non-reinforced B-CPVs. After the burst testing, formation and progression of damage under internal pressure were evaluated based on the measured data and microscopic analysis. Consequently, it was found that damage formation such as matrix cracking, transverse cracks, debonding, and leakage can occur for the investigated conditions. Besides, the mechanical performance improvement of non-reinforced B-CPVs under internal pressure was achieved due to homogeneous distribution of GnPs in the epoxy matrix and strengthening adhesion of the fiber-matrix interface.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

taken from several random locations of 0.25 wt.% GnPs reinforced epoxy matrix

Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6
Fig. 7.
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A. Onder, O. Sayman, T. Dogan and N. Tarakcioglu, Burst Failure Load of Composite Pressure Vessels, Compos. Struct., 2009, 89(1), p 159–166.

    Article  Google Scholar 

  2. O. Sayman, Analysis of Multi-Layered Composite Cylinders under Hygrothermal Loading, Compos. A Appl. Sci. Manuf., 2005, 36(7), p 923–933.

    Article  Google Scholar 

  3. D. Pavlovski, B. Mislavsky and A. Antonov, CNG Cylinder Manufacturers Test Basalt Fibre, Reinf. Plast., 2007, 51(4), p 36–39.

    Article  Google Scholar 

  4. M.T. Demirci, N. Tarakçıoğlu, A. Avcı, A. Akdemir and I. Demirci, Fracture Toughness (Mode I) Characterization of SiO2 Nanoparticle Filled Basalt/Epoxy Filament Wound Composite Ring with Split-Disk Test Method, Compos. B Eng., 2017, 119, p 114–124.

    Article  CAS  Google Scholar 

  5. M. Taşyürek and N. Tarakçioğlu, Enhanced Fatigue Behavior under Internal Pressure of CNT Reinforced Filament Wound Cracked Pipes, Compos. B Eng., 2017, 124, p 23–30.

    Article  Google Scholar 

  6. M. Kara, M. Kırıcı, A.C. Tatar and A. Avcı, Impact Behavior of Carbon Fiber/EPOXY Composite Tubes Reinforced with Multi-Walled Carbon Nanotubes at Cryogenic Environment, Compos. B Eng., 2018, 145, p 145–154.

    Article  CAS  Google Scholar 

  7. V. Eskizeybek, A. Avci and A. Gülce, The Mode I Interlaminar Fracture Toughness of Chemically Carbon Nanotube Grafted Glass Fabric/Epoxy Multi-Scale Composite Structures, Compos. A Appl. Sci. Manuf., 2014, 63, p 94–102.

    Article  CAS  Google Scholar 

  8. A. Montazeri, J. Javadpour, A. Khavandi, A. Tcharkhtchi and A. Mohajeri, Mechanical Properties of Multi-Walled Carbon Nanotube/Epoxy Composites, Mater. Des., 2010, 31(9), p 4202–4208.

    Article  CAS  Google Scholar 

  9. A. Aslan, E. Salur, H. Düzcükoğlu, Ö.S. Şahin and M. Ekrem, The Effects of Harsh Aging Environments on the Properties of Neat and MWCNT Reinforced Epoxy Resins, Construct. Building Mater., 2021, 272, p 121929.

    Article  CAS  Google Scholar 

  10. K.J. Green, D.R. Dean, U.K. Vaidya and E. Nyairo, Multiscale Fiber Reinforced Composites based on a Carbon Nanofiber/Epoxy nanophased Polymer Matrix: Synthesis, Mechanical, and Thermomechanical Behavior, Compos. A Appl. Sci. Manuf., 2009, 40(9), p 1470–1475.

    Article  Google Scholar 

  11. F. Pervin, Y. Zhou, V.K. Rangari and S. Jeelani, Testing and Evaluation on the Thermal and Mechanical Properties of Carbon Nano Fiber Reinforced SC-15 Epoxy, Mater. Sci. Eng., A, 2005, 405(1–2), p 246–253.

    Article  Google Scholar 

  12. S. Chandrasekaran, C. Seidel and K. Schulte, Preparation and Characterization of Graphite Nano-Platelet (GNP)/Epoxy Nano-Composite: Mechanical, Electrical and Thermal Properties, Eur. Polymer J., 2013, 49(12), p 3878–3888.

    Article  CAS  Google Scholar 

  13. S. Chatterjee, F. Nafezarefi, N. Tai, L. Schlagenhauf, F. Nüesch and B. Chu, Size and Synergy Effects of Nanofiller Hybrids Including Graphene Nanoplatelets and Carbon Nanotubes in Mechanical Properties of Epoxy Composites, Carbon, 2012, 50(15), p 5380–5386.

    Article  CAS  Google Scholar 

  14. N.C. Adak, S. Chhetri, N.H. Kim, N.C. Murmu, P. Samanta and T. Kuila, Static and Dynamic Mechanical Properties of Graphene Oxide-Incorporated Woven Carbon Fiber/Epoxy Composite, J. Mater. Eng. Perform., 2018, 27(3), p 1138–1147.

    Article  CAS  Google Scholar 

  15. F.L. Jia, K.X. Wei, W. Wei, F.Q. Chu, Q.B. Du, I.V. Alexandrov and J. Hu, Enhanced Thermal Conductivity and Tensile Strength of Copper Matrix Composite with Few-Layer Graphene Nanoplates, J. Mater. Eng. Perform., 2021, 30, p 1–8.

    Article  Google Scholar 

  16. V.G.S. Veerakumar, B.P. Shanmugavel, R. Paskaramoorthy and S. Harish, The Influence of Graphene Nanoplatelets on the Tensile and Impact Behavior of Glass-Fiber-Reinforced Polymer Composites, J. Mater. Eng. Perform., 2021, 30(1), p 596–609.

    Article  CAS  Google Scholar 

  17. M. Bulut, Mechanical Characterization of Basalt/Epoxy Composite Laminates Containing Graphene Nanopellets, Compos. B Eng., 2017, 122, p 71–78.

    Article  CAS  Google Scholar 

  18. M.-Y. Shen, T.-Y. Chang, T.-H. Hsieh, Y.-L. Li, C.-L. Chiang, H. Yang and M.-C. Yip, Mechanical Properties and Tensile Fatigue of Graphene Nanoplatelets Reinforced Polymer Nanocomposites, J. Nanomater., 2013, 2013, p 1.

    Google Scholar 

  19. P. Xu, J. Zheng and P. Liu, Finite Element Analysis of Burst Pressure of Composite Hydrogen Storage Vessels, Mater. Des., 2009, 30(7), p 2295–2301.

    Article  CAS  Google Scholar 

  20. L. Parnas and N. Katırcı, Design of Fiber-Reinforced Composite Pressure Vessels under Various Loading Conditions, Compos. Struct., 2002, 58(1), p 83–95.

    Article  Google Scholar 

  21. M. Kara, M. Uyaner, A. Avci and A. Akdemir, Effect of Non-Penetrating Impact Damages of Pre-Stressed GRP Tubes at low Velocities on the Burst Strength, Compos. B Eng., 2014, 60, p 507–514.

    Article  CAS  Google Scholar 

  22. P. Mertiny, K. Juss and M.M. El Ghareeb, Evaluation of Glass and Basalt Fiber Reinforcements for Polymer Composite Pressure Piping, J. Pressure Vessel Technol., 2009, 131(6), p 061407.

    Article  Google Scholar 

  23. A. Endruweit, F. Gommer and A. Long, Stochastic Analysis of Fibre Volume Fraction and Permeability in Fibre Bundles with Random Filament Arrangement, Compos. A Appl. Sci. Manuf., 2013, 49, p 109–118.

    Article  CAS  Google Scholar 

  24. P. Krishnan, M.A. Majid, A.J. Yi, M. Afendi, S. Yaacob and A. Gibson, An Automated Portable Multiaxial Pressure Test Rig for Qualifications of Glass/Epoxy Composite Pipes, Sci. Eng. Compos. Mater., 2018, 25(2), p 243–252.

    Article  CAS  Google Scholar 

  25. P. Krishnan, M.A. Majid, M. Afendi, A. Gibson and H.A. Marzuki, Effects of Winding Angle on the Behaviour of Glass/Epoxy Pipes under Multiaxial Cyclic Loading, Mater. Des., 2015, 88, p 196–206.

    Article  CAS  Google Scholar 

  26. N. Tarakcioglu, A. Akdemir and A. Avci, Strength of Filament Wound GRP Pipes with Surface Crack, Compos. B Eng., 2001, 32(2), p 131–138.

    Article  Google Scholar 

  27. J. Rousseau, D. Perreux and N. Verdiere, The Influence of Winding Patterns on the Damage Behaviour of Filament-Wound Pipes, Compos. Sci. Technol., 1999, 59(9), p 1439–1449.

    Article  CAS  Google Scholar 

  28. N. Tarakçıoğlu, The Effect of Winding Angle on Material Properties in Filament Wrapped Glass-Epoxy Pipes with and Without Surface Cracks, PhD thesis, Selçuk University, Konya, (1992)

  29. M.T. Demirci, The Effect of SiO2 Nanoparticle Additive on Fatigue Behavior of Basalt Fiber Reinforced Composite Pipes with and Without Surface Cracks. PhD thesis, Selçuk University, Konya, (2015)

Download references

Acknowledgment

This study was supported by the Selcuk University Scientific Research Projects (B.A.P) under grant number 17101005. The authors are also grateful for the continued support provided by DURMAZ HYDRAULIC, FER-RO, and IZOREEL Companies throughout this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harun Sepetcioglu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sepetcioglu, H., Tarakcioglu, N. Effect of Graphene Nanoplatelets on Progressive Failure Behavior under Internal Pressure of Composite Cylindrical Pressure Vessels. J. of Materi Eng and Perform 31, 2225–2239 (2022). https://doi.org/10.1007/s11665-021-06449-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06449-x

Keywords

Navigation