Skip to main content
Log in

Three-point Bending Behavior and Energy Absorption Capacity of Composite Tube Reinforced by Gradient Braided Structure in Radial Direction

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This study aims to investigate the radial gradient structural effect on energy absorption and failure behavior of braided composite tubes. Two-layer tubular braided fabrics were fabricated using over-braiding technology with three types of radial gradient configurations in terms of uninform, descending and ascending pattern. The structure of surface layer touching with indenter roll was found to have a significant role on the bending behavior and failure mode. The composite tube possessing the small angle surface layer tends to fail in top-surface mode characterized by compression damage in contact area between indenter roll and tube. With the increasing of the braiding angle in surface layer, the bottom-surface failure mode characterized by penetrating crack in circumferential direction was observed, which accompanies abruptly loading drop and loss of energy absorption capacity. In addition, the tube in descending gradient pattern contributes to higher flexural modulus and peak load due to high fiber volume fraction, while keeps top-surface failure mode because of load spreading ability provided by surface layer with small braiding angle. The results show that a proper selection of stacking sequence and braiding angle in multi-layer braided tube is capable of effectively enhancing the energy absorption of tubal structures under bending load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Baroutaji, M. Sajjia, and A. Olabi, Thin-Walled Structures, 118, 137 (2017).

    Article  Google Scholar 

  2. Y. Kyosev, “Braiding Technology for Textiles: Principles, Design and Processes”, pp.2–11, Woodhead Publishing, 2014.

  3. Ayranci, Cagri and J. Carey, Compos. Struct., 85, 43 (2008).

    Article  Google Scholar 

  4. C. H. Chiu, K. H. Tsai, and W. J. Huang, J. Compos. Mater., 32, 1964 (1998).

    Article  CAS  Google Scholar 

  5. V. M. Karbhari and J. E. Haller, Compos. Struct., 43, 93 (1998).

    Article  Google Scholar 

  6. Z. Ping, L. Gui, and Z. Fan, Acta Materiae Compositae Sinica, 24, 146 (2007).

    Google Scholar 

  7. V. M. Karbhari, P. J. Falzon, and I. Herzberg, J. Compos. Mater., 31, 1164 (1997).

    Article  CAS  Google Scholar 

  8. C. H. Chiu, K. H. Tsai, and W. J. Huang, Compos. Sci. Technol, 59, 1713 (1999).

    Article  CAS  Google Scholar 

  9. C. Priem, R. Othman, P. Rozycki, and D. Guillon, Compos. Struct., 116, 814 (2014).

    Article  Google Scholar 

  10. S. Jbeard and F. Chang, Int. J. Crashworthiness, 7, 191 (2002).

    Article  Google Scholar 

  11. P. Zhang, L. Gui, Z. Fan, Q. Yu, and Z. Li, Comput. Mater. Sci., 73, 146 (2013).

    Article  Google Scholar 

  12. X. Xiao, M. E. Botkin, and N. L. Johnson, Thin-Walled Structures, 47, 740 (2009).

    Article  Google Scholar 

  13. A. Miravete, J. M. Bielsa, A. Chiminelli, J. Cuartero, S. Serrano, and N. Tolosana, Compos. Sci. Technol., 66, 2954 (2006).

    Article  CAS  Google Scholar 

  14. J. Huang and X. Wang, Compos. Struct., 91, 222 (2009).

    Article  Google Scholar 

  15. C. Mcgregor, N. Zobeiry, R. Vaziri, A. Poursartip, and X. Xiao, Compos. Pt. A-Appl. Sci. Manuf., 95, 208 (2017).

    Article  CAS  Google Scholar 

  16. P. Potluri, A. Manan, M. Francke, and R. J. Day, Compos. Struct., 75, 377 (2006).

    Article  Google Scholar 

  17. R. Sturm and F. Heieck, Compos. Struct., 134, 957 (2015).

    Article  Google Scholar 

  18. H. Zhou, W. Zhang, T. Liu, B. Gu, and B. Sun, Compos. Part A. Appl. Sci. Manuf., 79, 52 (2015).

    Article  CAS  Google Scholar 

  19. Z. Li, Z. Zheng, J. Yu, and L. Guo, Mater. Des., 52, 1058 (2013).

    Article  Google Scholar 

  20. I. Duarte, M. Vesenjak, and L. Krstulović-Opara, Compos. Struct., 109, 48 (2014).

    Article  Google Scholar 

  21. G. Sun, T. Pang, G. Zheng, J. Song, and Q. Li, Int. J. Mech. Sci., 115, 465 (2016).

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the great support from the National Natural Science Foundation of China (Grant No.51775514, 11702249) and Zhejiang Provincial Natural Science Foundation of China (Grant No.LR18E050001, LGG19E050028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongxiang Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Shen, Y., Pan, Z. et al. Three-point Bending Behavior and Energy Absorption Capacity of Composite Tube Reinforced by Gradient Braided Structure in Radial Direction. Fibers Polym 20, 1455–1466 (2019). https://doi.org/10.1007/s12221-019-1088-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-1088-x

Keywords

Navigation