Skip to main content
Log in

Microstructure and Microhardness of H13 and Cr8 Die Steels in Control Forging and Cooling Process

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The control forging and cooling experiments of H13 and Cr8 die steel were carried out on a MMS-200 thermal simulator. When the cumulative strain of H13 steel reached 2.302 by drawing once, the number of recrystallized grains increased, the recrystallized grains were refined and the corresponding grain grade was about eight. The grain was refined with deformation bands at 750 °C in non-recrystallization region. With increasing cooling rate, the distorted austenite grains evolved into fine recrystallized grains and distorted austenite grains. The microhardness value of annealed H13 steel increased and then decreased with increasing cumulative strain and cooling rate, decreased and then increased with increasing drawing temperature. When the cumulative strain was 1.609 by drawing twice for Cr8 steel, the distribution and quantity of carbide particles were improved. With increasing deformation temperature, the size and number of carbide particles decreased and the dissolution degree increased significantly. Moreover, the intragranular carbide particles dissolved preferentially into matrix. With increasing cooling rate, it presented acicular martensite with granular carbides. The microhardness value of Cr8 decreased first and then increased with increasing cumulative strain and cooling rate, and increased and then decreased with increasing drawing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17
Fig. 18.
Fig. 19.

Similar content being viewed by others

Reference

  1. N. Sanchez-Mouriño, R. Petrov, J.H. Bae, K. Kim and L.A.I. Kestens, Microstructural Changes after Control Rolling and Interrupted Accelerated Cooling Simulations in Pipeline Steel, Steel Res. Int., 2011, 82(4), p 352–361.

    Article  Google Scholar 

  2. P.C.M. Rodrigues, E.V. Pereloma and D.B. Santos, Mechanical Properities of an HSLA Bainitic Steel Subjected to Controlled Rolling with Accelerated Cooling, Mater. Sci. Eng. A, 2000, 283(1–2), p 136–143.

    Article  Google Scholar 

  3. J.H. Ai, T.C. Zhao, H.J. Gao, Y.H. Hu and X.S. Xie, Effect of Controlled Rolling and Cooling on the Microstructure and Mechanical Properties of 60Si2MnA Spring Steel Rod, J. Mater. Process. Tech., 2005, 160(3), p 390–395.

    Article  CAS  Google Scholar 

  4. S. Zhao, D.L. Wei, R.B. Li and L. Zhang, Effect of Cooling Rate on Phase Transformation and Microstructure of Nb–Ti Microalloyed Steel, Mater. Trans., 2014, 55(8), p 1274–1279.

    Article  CAS  Google Scholar 

  5. J.C. Herman, Impact of New Rolling and Cooling Technologies on Thermomechanically Processed Steels, Ironmak, Steelmak., 2013, 28(2), p 159–163.

    Article  Google Scholar 

  6. Z. Li, D. Wu and W. Lv, Effects of Rolling and Cooling Conditions on Microstructure and Mechanical Properties of Low Carbon Cold Heading Steel, J. Iron Steel Res. Int., 2012, 19(11), p 64–70.

    Article  Google Scholar 

  7. J. Zhou, D.S. Ma, Y.K. Pei, Z.T. Li, B.S. Liu and S.L. Feng, Influence of Forging Ratio on Microstructure and Impact Property of H13 Hot Work Die Steel by Electrosmelting, Mater. Mech. Eng., 2013, 37(1), p 73–78. ((in Chinese))

    Google Scholar 

  8. Y.K. Pei, D.S. Ma, B.S. Liu, Z.Z. Chen, R. Zhou and J. Zhou, Effect of Forging Ratio on Microstructure and Mechanical Property of H13 Steel, Iron Steel, 2012, 47(2), p 81–86. ((in Chinese))

    CAS  Google Scholar 

  9. Y. Wang, C. Liu, F. Jiang, Y.X. Zheng and L.Z. Duan, Influence of Forging Process on the Structure and Impact Property of Electro Remelted H13 Steel, Hebei Metall., 2015, 6, p 5–7. ((in Chinese))

    Google Scholar 

  10. S. He, C.S. Li, J.Y. Ren and Y.H. Han, Investigation on Alloying Element Distribution in Cr8Mo2SiV Cold-Work Die Steel Ingot During Homogenization, Steel Res. Int., 2018, 89, p 1800148.

    Article  Google Scholar 

  11. Y. Xie, G.G. Cheng, X.L. Meng and Y. Huang, Thermal Stability of Primary Elongated V-rich Carbonitrides in H13 Tool Steel. Metall. Res. Technol., 2017, 114(206).

  12. H.G. Fu, X.D. Song, Y.P. Lei, Z.Q. Jiang, J. Yang, J.H. Wang and J.D. Xing, Effect of Homogenization Temperature on Microstructure and Mechanical Properties of Low-Carbon High-Boron Cast Steel, Metals Mater. Int., 2009, 15(3), p 345–352.

    Article  CAS  Google Scholar 

  13. S. He, C.S. Li, Y.H. Han and J.Y. Ren, Evolution of the Microstructure and Hardness of Fe-8Cr-2.1Mo-Si-V Die Steel at Different Cooling Rates after Hot Deformation, J. Mater. Eng. Perform., 2019, 28(5), p 4522–4530.

    Article  CAS  Google Scholar 

  14. T.V. Pirtovšek, G. Kugler and M. Terčelj, The Behaviour of the Carbides of Ledeburitic AISI D2 Tool Steel During Multiple Hot Deformation Cycles, Mater. Charact., 2013, 83(3), p 97–108.

    Article  Google Scholar 

  15. T.V. Pirtovšek, G. Kugler, M. Godec and M. Terčelj, Microstructural Characterization During the Hot Deformation of 1.17C–11.3Cr-1.48V-2.24W-1.35Mo Ledeburitic Tool Steel, Mater. Charact., 2011, 62(2), p 189–197.

    Article  Google Scholar 

  16. M.R. Ghomashchi and C.M. Sellars, Microstructural Changes in As-cast M2 Grade High Speed Steel During Hot Forging, Metall. Trans. A, 1993, 24A(10), p 2171–2179.

    Article  CAS  Google Scholar 

  17. B. Zhou, Y. Shen, J. Chen and Z.S. Cui, Breakdown Behavior of Eutectic Carbide in High Speed Steel During Hot Compression, J. Iron Steel Res. Int., 2011, 18(1), p 41–48.

    Article  CAS  Google Scholar 

  18. C.S. Li, Y.H. Han, J.Y. Ren, and S. He, An Experimental Method of Controlling Forging and Cooling for Die Steel. Appl. Num. CN202010933147.1.

  19. Y.H. Han, C.S. Li, J.Y. Ren, C.L. Qiu, E. Li and S.S. Chen, Characterization of Hot Deformation Behavior and Processing Map of As-cast H13 Hot Work Die Steel, Metals Mater. Int., 2021, 27, p 3574–3589.

    Article  CAS  Google Scholar 

  20. B. Ma, C.S. Li, Y.L. Song, J.K. Wang and F.L. Sui, Deformation and Recrystallization Microtextures of an Austenitic Steel During Asymmetrical Hot Rolling Process, J. Mater. Sci., 2017, 52, p 13212–13226.

    Article  CAS  Google Scholar 

  21. L. Vanherpe, N. Moelans, B. Blanpain and S. Vandewalle, Pinning Effect of Spheroid Second-Phase Particles on Grain Growth Studied by Three-Dimensional Phase-Field Simulations, Comput. Mater. Sci., 2010, 49(2), p 340–350.

    Article  CAS  Google Scholar 

  22. D. Poddar, P. Cizek, H. Beladi and P.D. Hodgson, Evolution of Strain-Induced Precipitates in a Model Austenitic Fe–30Ni–Nb Steel and Their Effect on the Flow Behaviour, Acta Mater., 2014, 80, p 1–15.

    Article  CAS  Google Scholar 

  23. S.M.K. Hosseini, A. Zaeri-Hanzaki and S. Yue, Effect of Austenite Deformation in Non-Recrystallization Region on Microstructure Development in Low-Silicon Content TRIP-Assisted Steels, Mater. Sci. Eng. A, 2014, 618, p 63–70.

    Article  CAS  Google Scholar 

  24. M.Y. Sun, Z.Q. Wang, X.M. Wang, C.J. Shang and R.D.K. Misra, The Significant Effect of Non-recrystallization Zone Reduction on Microstructure and Mechanical Properties in Multi-phase Steel from the Perspective of Crystallographic Structure and Variant Pairing, Mater. Sci. Eng. A, 2020, 778, p 139078.

    Article  CAS  Google Scholar 

  25. H. Yang, X.G. Zhou, Z.Y. Liu and G.D. Wang, Determination of No-recrystallization Temperature for a Nb-Bearing Steel, J. Wuhan Univ. Technol.-Mat. Sci. Edit., 2016, 31, p 644–647.

    Article  CAS  Google Scholar 

  26. S. Jin, N. Tao, K. Marthinsen and Y. Li, Deformation of an Al–7Mg Alloy with Extensive Structural Micro-segregations During Dynamic Plastic Deformation, Mater. Sci. Eng. A, 2015, 628, p 160–167.

    Article  CAS  Google Scholar 

  27. Y.H. Han, C.S. Li, J.Y. Ren, C.L. Qiu, Y.Q. Zhang and J.Y. Wang, Dendrite Segregation Changes in High Temperature Homogenization Process of As-cast H13 Steel, ISIJ Int., 2019, 59(10), p 1893–1900.

    Article  CAS  Google Scholar 

  28. Y.H. Han, C.S. Li, J.Y. Ren, C.L. Qiu, S.S. Chen and E. Li, Dynamic Recrystallization Behavior During Hot Deformation of As-cast 4Cr5MoSiV1 Steel, J. Mater. Sci., 2021, 56, p 8762–8777.

    Article  CAS  Google Scholar 

  29. C.S. Li, S. He, J.Y. Ren and Y.H. Han, The Flow Stress Behavior and Constitutive Model of Cr8Mo2SiV Tool Steel During Hot Deformation, Steel Res. Int., 2021, 92, p 2000434.

    Article  CAS  Google Scholar 

  30. A.G. Ning, H.J. Guo, X.C. Chen and X.L. Sun, Precipitation Behaviors of Carbides in H13 Steel During ESR, Forging and Tempering, J. Univ. Sci. Technol. B., 2014, 36(7), p 895–902. ((in Chinese))

    CAS  Google Scholar 

  31. R. Alizadeh, R. Mahmudi, A.H.W. Ngan and T.G. Langdon, Microstructural Evolution During Hot Shear Deformation of an Extruded Fine-Grained Mg–Gd–Y–Zr Alloy, J. Mater. Sci., 2017, 52, p 7843–7857.

    Article  CAS  Google Scholar 

  32. M. Chapa, S.F. Medina, V. Lopez and B. Fernandez, Influence of Al and Nb on Optimum Ti/N Ratio in Controlling Austenite Grain Growth at Reheating Temperatures, J. Mol. Catal., 2002, 11(1), p 1288–1296.

    Google Scholar 

  33. W.W. Song, Y.A. Min and X.C. Wu, Study on Carbides and Their Evolution in H13 Hot Work Steel, Trans. Mater. Heat Treat., 2009, 30(5), p 122–126.

    CAS  Google Scholar 

  34. J. Wang, Z. Xu and X. Lu, Effect of the Quenching and Tempering Temperatures on the Microstructure and Mechanical Properties of H13 Steel, J. Mater. Eng. Perform., 2020, 29(3), p 1849–1859.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research Project of China (2016YFB0300402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changsheng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Han, Y., Li, E. et al. Microstructure and Microhardness of H13 and Cr8 Die Steels in Control Forging and Cooling Process. J. of Materi Eng and Perform 31, 4983–4997 (2022). https://doi.org/10.1007/s11665-021-06303-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06303-0

Keywords

Navigation