Skip to main content
Log in

Understanding of the Microstructure Evolution and Wear Resistance of Cr12MoV Die Steel during Deep Cryogenic Treatment

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present study investigated the influence of deep cryogenic treatment (DCT) on the microstructure evolution and wear resistance of Cr12MoV die steel. Four types of heat treatments (quenching + tempering (QT), quenching + DCT (QC), quenching + DCT + tempering (QCT) and quenching + tempering + DCT (QTC)) were utilized to obtain different microstructure and mechanical properties. The hardness, impact toughness, weight loss, frictional coefficient, volume fraction of retained austenite (RA), secondary nanometric carbides (SNC) and worn surface morphology were investigated in detail to discuss the relation between microstructure evolution and wear mechanism changes induced by DCT. The results show that the precipitation of SNC has less effect on hardness than the decrease of carbon content in martensite that caused by DCT and tempering. The principal reason for the high hardness and low toughness without tempering is the high carbon content in martensite. The RA volume fraction has greater effect on the hardness and toughness in condition of tempering. Four types of wear cracks (matrix cracks, boundary cracks, extension cracks and carbide cracks) were identified for the analysis of worn surface morphology. When the matrix hardness is high and RA volume fraction is relatively low, the wear cracks were mainly carbide cracks and extension cracks, accompanied by a few of boundary cracks. When the matrix hardness is low and the RA volume fraction is relatively high, the wear cracks were mainly matrix cracks, accompanied by some boundary cracks and extension cracks. DCT affects the wear mechanism of Cr12MoV die steel by facilitating the transformation of RA and the precipitation of SNC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.N. Korade, K.V. Ramana, K.R. Jagtap and N.B. Dhokey, Effect of Deep Cryogenic Treatment on Tribological Behaviour of D2 Tool Steel—An Experimental Investigation, Mater. Today Proc., 2017, 4, p 7665–7673.

    Article  CAS  Google Scholar 

  2. E. Macherauch, Ed, V. Hauk, Ed, Residual stresses in science and technology, Residual stresses in science and technology (1987).

  3. S. Ren, Y. Zhang, Y. Zhao, Z. An, F. Xue, J. Yao, Z. Sun and J. Chang, Enhanced Surface Properties and Microstructure Evolution of Cr12MoV Using Ultrasonic Surface Rolling Process Combined with Deep Cryogenic Treatment, J. Mater. Eng. Perform., 2019, 28, p 1132–1140.

    Article  CAS  Google Scholar 

  4. P. Baldissera, C. Delprete, Deep Cryogenic Treatment: A Bibliographic Review. The Open Mechanical Engineering Journal 2 (2008).

  5. H. Li, W. Tong, J. Cui, H. Zhang, L. Chen and L. Zuo, The Influence of Deep Cryogenic Treatment on the Properties of High-Vanadium Alloy Steel, Mater. Sci. Eng. A, 2016, 662, p 356–362.

    Article  CAS  Google Scholar 

  6. P.V. Krot, S.V. Bobyr, N.V. Biba, and M.O. Dedik, Modeling of Phase Transformations in the Rolls of the Special Alloy Steels during Quenching and Deep Cryogenic Treatment. In 3rd Mediterranean Conference on Heat Treatment and Surface Engineering (2016).

  7. F.J.D. Silva, S.D. Franco, Á.R. Machado, E.O. Ezugwu and A.M. Souza Jr., Performance of Cryogenically Treated HSS Tools, Wear, 2006, 261, p 674–685.

    Article  Google Scholar 

  8. M.E. Mehtedi, P. Ricci, L. Drudi, S.E. Mohtadi, M. Cabibbo and S. Spigarelli, Analysis of the effect of Deep Cryogenic Treatment on the Hardness and Microstructure of X30 CrMoN 15 1 Steel, Mater. Des., 2012, 33, p 136–144.

    Article  Google Scholar 

  9. S.S. Gill, J. Singh, R. Singh and H. Singh, Effect of Cryogenic Treatment on AISI M2 High Speed Steel: Metallurgical and Mechanical Characterization, J. Mater. Eng. Perform., 2012, 21, p 1320–1326.

    Article  CAS  Google Scholar 

  10. A. Molinari, M. Pellizzari, S. Gialanella, G. Straffelini and K.H. Stiasny, Effect of Deep Cryogenic Treatment on the Mechanical Properties of Tool Steels, J. Mater. Process. Technol., 2001, 118, p 350–355.

    Article  CAS  Google Scholar 

  11. D. Das, A.K. Dutta and K.K. Ray, Sub-Zero Treatments of AISI D2 Steel: Part I. Microstructure and hardness, Mater. Sci. Eng. A, 2010, 527, p 2182–2193.

    Article  Google Scholar 

  12. D. Das, A.K. Dutta and K.K. Ray, Sub-Zero Treatments of AISI D2 Steel: Part II. Wear Behavior, Mater. Sci. Eng. A, 2010, 527, p 2194–2206.

    Article  Google Scholar 

  13. A.K. Dutta, On the Refinement of Carbide Precipitates by Cryotreatment in AISI D2 Steel, Philos. Mag., 2009, 89, p 55–76.

    Article  ADS  Google Scholar 

  14. A. Bensely, D. Senthilkumar, D.M. Lal, G. Nagarajan and A. Rajadurai, Effect of Cryogenic Treatment on Tensile Behavior of Case Carburized Steel-815M17, Mater. Charact., 2007, 58, p 485–491.

    Article  CAS  Google Scholar 

  15. S. Zhirafar, A. Rezaeian and M. Pugh, Effect of Cryogenic Treatment on the Mechanical Properties of 4040 Steel, J. Mater. Process Technol., 2007, 186(1–3), p 298–303.

    Article  CAS  Google Scholar 

  16. K. Sanjeev, S. Rakesh, and S. Vishal, Wear behavior of differently cryogenically treated AISI H13 steel against cold work steel, in ARCHIVE Proceedings of the Institution of Mechanical Engineers Part E Journal of Process Mechanical Engineering 1989–1996 (2018) 095440891878162.

  17. M.J. Klug, P.J. Klug, T. Kranjec and B. Podgornik, Cross-effect of Surface Finishing and Deep Cryogenic Treatment on Corrosion Resistance of AISI M35 steel, J. Mater. Res. Technol., 2021, 14, p 2365–2381.

    Article  Google Scholar 

  18. P. Jovievi-Klug, T. Kranjec, M. Jovievi-Klug, T. Kosec and B. Podgornik, Influence of the Deep Cryogenic Treatment on AISI 52100 and AISI D3 Steel’s Corrosion Resistance, Materials, 2021, 14, p 6357.

    Article  ADS  Google Scholar 

  19. E. Bartolomé, B. Bozzo, P. Sevilla, O. Martínez-Pasarell and T. Puig, ABS 3D Printed Solutions for Cryogenic Applications, Cryogenics, 2017, 80, p 32–37.

    Google Scholar 

  20. P. Jurči, M. Dománková, J. Ptačinová, M. Pašák, M. Kusý and P. Priknerová, Investigation of the Microstructural Changes and Hardness Variations of Sub-Zero Treated Cr-V Ledeburitic Tool Steel Due to the Tempering Treatment, J. Mater. Eng. Perform., 2018, 27, p 1514–1529.

    Article  Google Scholar 

  21. P. Biswas, S. Ghosh, A. Sarkar and N.G. Roy, Investigation of Deep Cryogenic Treatment of Steels for Medical Tooling Applications, J. Phys. Conf. Ser., 2021, 1797, p 012057.

    Article  CAS  Google Scholar 

  22. P. Jovievi-Klug and B. Podgornik, Review on the Effect of Deep Cryogenic Treatment of Metallic Materials in Automotive Applications, Met Open Access Metall J, 2020, 10, p 434.

    Google Scholar 

  23. S. Kalia, Cryogenic Processing: A Study of Materials at Low Temperatures, J. Low Temp. Phys., 2010, 158, p 934–945.

    Article  CAS  ADS  Google Scholar 

  24. M. Villa, and M.A.J. Somers, Cryogenic treatment of steel: from concept to metallurgical understanding, in 24th IFHTSE Congress 2017 European Conference on Heat Treatment and Surface Engineering A3TS Congress (2017).

  25. V.G. Gavriljuk, W. Theisen, V.V. Sirosh, E.V. Polshin, A. Kortmann, G.S. Mogilny, Y.N. Petrov and Y.V. Tarusin, Low-Temperature Martensitic Transformation in Tool Steels in Relation to Their Deep Cryogenic Treatment, Acta Mater., 2013, 61, p 1705–1715.

    Article  CAS  ADS  Google Scholar 

  26. M.A. Jaswin and D.M. Lal, Effect of Cryogenic Treatment on Corrosion Resistance and Thermal Expansion of Valve Steels, Int. J. Eng. Technol. Manag. Appl. Sci., 2015, 3, p 2349–4476.

    Google Scholar 

  27. P. Jovičević-Klug, L. Tegg, M. Jovičević-Klug, R. Parmar, M. Amati, L. Gregoratti, L. Almásy, J.M. Cairney and B. Podgornik, Understanding Carbide Evolution and Surface Chemistry During Deep Cryogenic Treatment in High-Alloyed Ferrous Alloy, Appl. Surf. Sci., 2023, 610, p 155497.

    Article  Google Scholar 

  28. P. Jovievi-Klug, M. Jovievi-Klug and B. Podgornik, Effectiveness of Deep Cryogenic Treatment on Carbide Precipitation, J. Market. Res., 2020, 9, p 13014–13026.

    Google Scholar 

  29. P. Jovičević-Klug, M. Jovičević-Klug, T. Sever, D. Feizpour and B. Podgornik, Impact of Steel Type, Composition and Heat Treatment Parameters on Effectiveness of Deep Cryogenic Treatment, J. Mater. Res. Technol., 2021, 14, p 1007–1020.

    Article  Google Scholar 

  30. M. Villa and M.A.J. Somers, Cryogenic Treatment of an AISI D2 Steel: The Role of Isothermal Martensite Formation and “Martensite Conditioning,” Cryogenics, 2020, 110, p 103131.

    Article  CAS  Google Scholar 

  31. P. Jovičević-Klug, M. Jenko, M. Jovičević-Klug, B.Š Batič, J. Kovač and B. Podgornik, Effect of Deep Cryogenic Treatment on Surface Chemistry and Microstructure of Selected High-Speed Steels, Appl. Surf. Sci., 2021, 548, p 149257.

    Article  Google Scholar 

  32. J.Y. Huang, Y.T. Zhu, X.Z. Liao, I.J. Beyerlein, M.A. Bourke and T.E. Mitchell, Microstructure of Cryogenic Treated M2 Tool Steel, Mater. Sci. Eng. A, 2003, 339, p 241–244.

    Article  Google Scholar 

  33. P. Jovičević-Klug, M. Jovičević-Klug and B. Podgornik, Unravelling the Role of Nitrogen in Surface Chemistry and Oxidation Evolution of Deep Cryogenic Treated High-Alloyed Ferrous Alloy, Coatings, 2022, 12, p 213.

    Article  Google Scholar 

  34. K. Amini, S. Nategh and A. Shafyei, Influence of Different Cryotreatments on Tribological Behavior of 80CrMo12 5 Cold Work Tool Steel, Mater. Des., 2010, 31, p 4666–4675.

    Article  CAS  Google Scholar 

  35. A.I. Tyshchenko, W. Theisen, A. Oppenkowski, S. Siebert, O.N. Razumov, A.P. Skoblik, V.A. Sirosh, Y.N. Petrov and V.G. Gavriljuk, Low-Temperature Martensitic Transformation and Deep Cryogenic Treatment of a Tool Steel, Mater. Sci. Eng. A, 2010, 527, p 7027–7039.

    Article  Google Scholar 

  36. S.M. Teus, V.F. Mazanko, J.M. Olive and V.G. Gavriljuk, Grain Boundary Migration of Substitutional and Interstitial Atoms in α-iron, Acta Mater., 2014, 69, p 105–113.

    Article  CAS  ADS  Google Scholar 

  37. B.K. Anil Kumar, M.G. Ananthaprasad, and K. Gopalakrishna, Action of Cryogenic chill on Mechanical properties of Nickel alloy Metal Matrix Composites, In Materials Science and Engineering Conference Series pp. 012116 (2016).

  38. V.G. Gavriljuk, W. Theisen, V.V. Sirosh, E.V. Polshin, A. Kortmann, G.S. Mogilny, Y.N. Petrov and Y.V. Tarusin, Low-temperature Martensitic Transformation in Tool Steels in Relation to Their Deep Cryogenic Treatment, Acta Mater., 2013, 61, p 1705–1715.

    Article  CAS  ADS  Google Scholar 

  39. A. Antony, N.M. Schmerl, A. Sokolova, R. Mahjoub, D. Fabijanic and N.E. Stanford, Quantification of the Dislocation Density, Size, and Volume Fraction of Precipitates in Deep Cryogenically Treated Martensitic Steels, Met. Open Access Metall. J., 2020, 10, p 1561.

    CAS  Google Scholar 

  40. S. Akncolu, Investigation of the Effect of Deep Cryogenic Process on the Tribological Properties of X153CrMoV12 Mold Steel, J. Mater. Eng. Perform., 2021, 30, p 2843–2852.

    Article  Google Scholar 

  41. R. Gecu, Combined Effects of Cryogenic Treatment and Tempering on Microstructural and Tribological Features of AISI H13 Steel, Mater. Chem. Phys., 2022, 292, p 126802.

    Article  CAS  Google Scholar 

  42. L. Han, Y. Wang, S. Liu, Z. Zhang, X. Song, Y. Li, W. Liu, Z. Yang and M. Mu, Effect of Cryogenic Treatment on the Microstructure and Mechanical Properties of Selected Laser Melted H13 Steel, J. Market. Res., 2022, 21, p 5056–5065.

    CAS  Google Scholar 

  43. N.B. Dhokey, S.S. Maske and P. Ghosh, Effect of Tempering and Cryogenic Treatment on Wear and Mechanical Properties of Hot Work Tool Steel (H13), Mater. Today Proc., 2021, 43, p 3006–3013.

    Article  CAS  Google Scholar 

  44. S. Katoch, R. Sehgal, V. Singh, M.K. Gupta, M. Mia and C.I. Pruncu, Improvement of Tribological Behavior of H-13 Steel by Optimizing the Cryogenic-Treatment Process Using Evolutionary Algorithms, Tribol. Int., 2019, 140, p 105895.

    Article  CAS  Google Scholar 

  45. B.A. Mokarian, K. Ghayour and H. Gharavi, The Combined Effect of Cryogenic and Boronising Treatments on the Wear Behaviour and Microstructure of DIN 1.2344 Steel, Trans. Inst. Met. Finish. Int. J. Surf. Eng. Coat., 2019, 97, p 121–128.

    Article  CAS  Google Scholar 

  46. M. Koneshlou, K.M. Asl and F. Khomamizadeh, Effect of Cryogenic Treatment on Microstructure, Mechanical and Wear Behaviors of AISI H13 Hot Work Tool Steel, Cryogenics, 2011, 51, p 55–61.

    Article  CAS  ADS  Google Scholar 

  47. E. Yildiz and S.Y. Tong, Investigation of the Effects of Deep Cryogenic Treatment on the Microstructure, Hardness, Strength and Wear Resistance of X17CrNi16-2 Martensitic Stainless Steel, Surf. Rev. Lett., 2023, 30, p 1–9.

    Article  Google Scholar 

  48. R. Colaço and R. Vilar, Stabilisation of Retained Austenite in Laser Surface Melted Tool Steels, Mater. Sci. Eng. A, 2004, 385, p 123–127.

    Article  Google Scholar 

  49. M. Villa, K. Pantleon and M.A. Somers, Evolution of Compressive Strains in Retained Austenite During Sub-Zero Celsius Martensite Formation and Tempering, Acta Mater., 2014, 65, p 383–392.

    Article  CAS  ADS  Google Scholar 

  50. A. Bensely, S. Venkatesh, D.M. Lal, G. Nagarajan, A. Rajadurai and K. Junik, Effect of Cryogenic Treatment on Distribution of Residual Stress in Case Carburized En 353 Steel, Mater. Sci. Eng. A, 2008, 479, p 229–235.

    Article  Google Scholar 

  51. M. Preciado and M. Pellizzari, Influence of Deep Cryogenic Treatment on the Thermal Decomposition of Fe-C Martensite, J. Mater. Sci., 2014, 49, p 8183–8191.

    Article  CAS  ADS  Google Scholar 

  52. S. Li, Y. Xie and X. Wu, Hardness and Toughness Investigations of Deep Cryogenic Treated Cold Work Die Steel, Cryogenics, 2010, 50, p 89–92.

    Article  ADS  Google Scholar 

  53. Z. Weng, K. Gu, J. Zheng, C. Cui, M. Zhang and J. Wang, Cryogenically Martensitic Transformation and Its Effects on Tempering Behaviors of Bearing Steel, Mater. Charact., 2022, 190, p 112066.

    Article  CAS  Google Scholar 

  54. K. Amini, A. Akhbarizadeh and S. Javadpour, Effect of Deep Cryogenic Treatment on the Formation of Nano-Sized Carbides and the Wear Behavior of D2 Tool Steel, Int. J. Miner. Metall. Mater., 2012, 19, p 5.

    Google Scholar 

  55. P.F.D.S. Farina, C.A. Barbosa, and H. Goldenstein, Microstructural Characterization of an AISI D2 Tool Steel Submitted to Cryogenic Treatment, in 18th International IFHTSE Congress (2010).

  56. D. Senthilkumar, I. Rajendran, M. Pellizzari and J. Siiriainen, Influence of Shallow and Deep Cryogenic Treatment on the Residual State of Stress of 4140 Steel, J. Mater. Process. Technol., 2011, 211, p 396–401.

    Article  CAS  Google Scholar 

  57. K. Amini, A. Akhbarizadeh and S. Javadpour, Investigating the Effect of Holding Duration on the Microstructure of 1.2080 Tool Steel During the Deep Cryogenic Heat Treatment, Vacuum, 2012, 86, p 1534–1540.

    Article  CAS  ADS  Google Scholar 

  58. Y. Dong, X.P. Lin and H.S. Xiao, Deep Cryogenic Treatment of High-Speed Steel and Its Mechanism, Heat Treat. Met., 1998, 25, p 55–59.

    CAS  Google Scholar 

  59. F. Meng, K. Tagashira, R. Azuma and H. Sohma, Role of Eta-Carbide Precipitations in the Wear Resistance Improvements of Fe-12Cr-Mo-V-14C Tool Steel by Cryogenic Treatment, Isij Int., 1994, 34, p 205–210.

    Article  CAS  Google Scholar 

  60. P. Jovicevic-Klug, M. Jovicevic-Klug, L. Thormahlen, J. Mccord, M. Rohwerder, M. Godec and B. Podgornik, Austenite Reversion Suppression with Deep Cryogenic Treatment: A Novel Pathway Towards 3rd Generation Advanced High-Strength Steels, Mater. Sci. Eng. A Struct. Mater. Prop. Misrostruct. Process., 2023, 837, p 145033.

    Article  Google Scholar 

  61. S.S. Xu, Y. Zhao, D. Chen, L.W. Sun, L. Chen, X. Tong, C.T. Liu and Z.W. Zhang, Nanoscale Precipitation and Its Influence on Strengthening Mechanisms in an Ultra-High Strength Low-Carbon Steel, Pergamon, 2019, 13, p 99–110.

    Google Scholar 

  62. O. Bouaziz and Y. Bréchet, Physical Relationship Between Mean-Field Micro-Mechanical Approach and Orowan Looping in Particle-Strengthened Materials, Scr. Mater., 2009, 60, p 366–368.

    Article  CAS  Google Scholar 

  63. S. Jiang, H. Wang, Y. Wu, X. Liu, H. Chen, M. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata and M. Chen, Ultrastrong Steel Via Minimal Lattice Misfit and High-Density Nanoprecipitation, Nature, 2017, 544, p 460–464.

    Article  CAS  PubMed  ADS  Google Scholar 

  64. Z.W. Zhang, C.T. Liu, Y.R. Wen, A. Hirata, S. Guo, G. Chen, M.W. Chen and B.A. Chin, Influence of Aging and Thermomechanical Treatments on the Mechanical Properties of a Nanocluster-Strengthened Ferritic Steel, Metall. and Mater. Trans. A., 2012, 43, p 351–359.

    Article  ADS  Google Scholar 

  65. M. Hunkel, Tempering Effects of Athermal Martensite During Quenching and Reheating of a SAE 52100 Bearing Steel, Mater. Sci. Eng. Struct. Mater. Prop. Misrostruct. Process., 2020, 790, p 139.

    Google Scholar 

  66. D.N. Korade, K.V. Ramana and K.R. Jagtap, Study of Effect of Population Density of Carbides on Surface Roughness and Wear Rate of H21 Tool Steel – ScienceDirect, Mater. Today Proc., 2019, 19, p 228–232.

    Article  CAS  Google Scholar 

  67. D. Kakas, B. Skoric, S. Mitrovic, M. Babic and M. Vilotic, Influence of Load and Sliding Speed on Friction Coefficient of IBAD Deposited TiN, Tribol. Ind., 2009, 31, p 3–10.

    Google Scholar 

  68. X.H. Cui, S.Q. Wang, M.X. Wei and Z.R. Yang, Wear Characteristics and Mechanisms of H13 Steel with Various Tempered Structures, J. Mater. Eng. Perform., 2011, 19, p 1055–1062.

    Article  Google Scholar 

  69. S.J. Gobbi, V.J. Gobbi, G. Reinke, P.V. Muterlle and D.M. Rosa, Ultra-Low-Temperature Process Effects on Microscale Abrasion of Tool Steel AISI D2, Mater. Sci. Technol., 2019, 35, p 1355–1364.

    Article  CAS  ADS  Google Scholar 

  70. S. Kumar, M. Nagraj, A. Bongale and N. Khedkar, Deep Cryogenic Treatment of AISI M2 Tool Steel and Optimisation of Its Wear Characteristics Using Taguchi’s Approach, Arab. J. Sci. Eng., 2018, 43, p 4917–4929.

    Article  CAS  Google Scholar 

  71. T. Shinde, C. Pruncu, N.B. Dhokey, A.C. Parau and A. Vladescu, Effect of Deep Cryogenic Treatment on Corrosion Behavior of AISI H13 Die Steel, Materials, 2021, 14, p 7863.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  72. R. Thakurai, H. Patle, B.R. Sunil and R. Dumpala, Effect of Cryogenic Treatment Duration on the Microhardness and Tribological Behavior of 40CrMoV5 Tool Steel, Mater. Today Proc., 2020, 38, p 2140–2144.

    Article  Google Scholar 

  73. T. Shinde, Influence of Carbide Particle Size on the Wear Performance of Cryogenically Treated H13 Die Steel, Surf. Eng., 2020, 37, p 1206–1214.

    Article  Google Scholar 

  74. Z. Jiang, L.A. Gyurova, A.K. Schlarb, K. Friedrich and Z. Zhang, Study on Friction and Wear Behavior of Polyphenylene Sulfide Composites Reinforced by Short Carbon Fibers and Sub-micro TiO2 Particles, Compos. Sci. Technol., 2008, 68, p 734–742.

    Article  CAS  Google Scholar 

  75. D. Felhs, J. Kargerkocsis, M.J. Churruca, P.M. Frontini and V. Pettarin, Changes in Tribological Performance of High Molecular Weight High Density Polyethylene Induced by the Addition of Molybdenum Disulphide Particles, Wear, 2010, 269, p 31–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyan Sun or Shuai Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Li, J., Zhang, Y. et al. Understanding of the Microstructure Evolution and Wear Resistance of Cr12MoV Die Steel during Deep Cryogenic Treatment. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09270-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09270-4

Keywords

Navigation