Skip to main content
Log in

Hot Deformation Behavior and Processing Map of Cu-Cr-Nb-Zr Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Hot compression tests were performed in the temperature and strain rate range of 700-900 °C and 0.001-10 s−1, respectively, to study the hot deformation behavior and further generate the constitutive equation and a processing map of the Cu-Cr-Nb-Zr alloy. The apparent activation energy for hot deformation was determined as 404±17 kJ mol−1 using Arrhenius type hyperbolic-sine equation. Possible reason for high activation energy was analyzed and the active deformation mechanism during hot deformation was further suggested. Constitutive equation was formulated to predict the flow stress. Dynamic material model was employed to generate the processing map and it was correlated with microstructural examination of the hot compressed specimens. Based on the microstructural observations, the optimum safe hot working parameters for Cu-Cr-Nb-Zr alloy were identified as 880-900°C/10-2 to 100.5 s-1 and 800-875 °C/100.5-101 s−1. The hot working parameters in the safe region were applied to the forging process and results agreed well with the processing map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H.C. Groh, D.L. Ellis, and W.S. Loewenthal, Comparison of GRCop-84 to Other Cu Alloys with High Thermal Conductivities, J. Mater. Eng. Perform., 2007, 17(4), p 594–606. https://doi.org/10.1007/s11665-007-9175-3

    Article  CAS  Google Scholar 

  2. G. Li, B.G. Thomas, and J.F. Stubbins, Modeling Creep and Fatigue of Copper Alloys, Metall. Mater. Trans. A, 2000, 31(10), p 2491–2502.

    Article  Google Scholar 

  3. X. Guo, Z. Xiao, W. Qiu, Z. Li, Z. Zhao, X. Wang, and Y. Jiang, Microstructure and Properties of Cu-Cr-Nb Alloy with High Strength, High Electrical Conductivity and Good Softening Resistance Performance at Elevated Temperature, Mater. Sci. Eng. A., 2019, 749, p 281–290. https://doi.org/10.1016/j.msea.2019.02.036

    Article  CAS  Google Scholar 

  4. G.J. Butterworth and C.B.A. Forty, Review Article A Survey of the Properties Reactor Materials of Copper Alloys for Use as Fusion, J. Nucl. Mater., 1992, 189, p 237–276.

    Article  CAS  Google Scholar 

  5. S.A. Lockyer and F.W. Noble, Precipitate Structure in a Cu-Ni-Si Alloy, J. Mater. Sci., 1994, 29(1), p 218–226.

    Article  CAS  Google Scholar 

  6. K.R. Anderson, J.R. Groza, R.L. Dreshfield, and D. Ellis, High-Performance Dispersion-Strengthened Cu-8 Cr-4 Nb Alloy, Metall. Mater. Trans. A, 1995, 26(9), p 2197–2206.

    Article  Google Scholar 

  7. K.R. Anderson, J.R. Groza, R.L. Dreshfield, and D. Ellis, Microstructural Evolution and Thermal Stability of Precipitation-Strengthened Cu8Cr4Nb Alloy, Mater. Sci. Eng. A, 1993, 169(1–2), p 167–175.

    Article  Google Scholar 

  8. R.D.K. Misra and V.S. Prasad, On the Dynamic Embrittlement of Copper-Chromium Alloys by Sulphur, J. Mater. Sci., 2000, 35, p 3321–3325. https://doi.org/10.1023/A:1004839825660

    Article  CAS  Google Scholar 

  9. S.C. Krishna, K.V. Radhika, K.T. Tharian, M.S. Kiranmayee, G.S Rao, A.K. Jha, and B. Pant, Dynamic Embrittlement in Cu-Cr-Zr-Ti Alloy: Evidence of Intergranular Segregation of Sulphur, J. Mater. Eng. Perform., 2013, 22(8), p 2331–2336.

    Article  Google Scholar 

  10. R.D.K. Misra, V.S. Prasad, and P.R. Rao, Dynamic Embrittlement in an Age-Hardenable Copper-Chromium Alloy, Scr. Mater., 1996, 35(1), p 129–133. https://doi.org/10.1016/1359-6462(96)00098-X

    Article  CAS  Google Scholar 

  11. Y. Yang, L. Wang, L. Snead, and S.J. Zinkle, Development of Novel Cu-Cr-Nb-Zr Alloys with the Aid of Computational Thermodynamics, Mater. Des., 2018, 156, p 370–380. https://doi.org/10.1016/j.matdes.2018.07.003

    Article  CAS  Google Scholar 

  12. A.K. Shukla, S.V.S.N. Murty, R.S. Kumar, and K. Mondal, Spark Plasma Sintering of Dispersion Hardened Cu-Cr-Nb Alloy Powders, J. Alloys Compd., 2013, 577, p 70–78. https://doi.org/10.1016/j.jallcom.2013.04.088

    Article  CAS  Google Scholar 

  13. Y.V.R.K. Prasad, K.P. Rao, and S. Sasidhara, “Hot Working Guide.,” 2015

  14. W. Bao, L. Bao, D. Liu, D. Qu, Z. Kong, M. Peng, and Y. Duan, Constitutive Equations, Processing Maps, and Microstructures of Pb-Mg-Al-B-0.4Y Alloy under Hot Compression, J. Mater. Eng. Perform., 2020, 29(1), p 607–619. https://doi.org/10.1007/s11665-019-04544-8

    Article  CAS  Google Scholar 

  15. Y. Duan, L. Ma, H. Qi, R. Li, and P. Li, Developed Constitutive Models, Processing Maps and Microstructural Evolution of Pb-Mg-10Al-0.5B Alloy, Mater. Charact., 2017, 129, p 353–366. https://doi.org/10.1016/j.matchar.2017.05.026

    Article  CAS  Google Scholar 

  16. Y. Liu, C. Geng, Q. Lin, Y. Xiao, J. Xu, and W. Kang, Study on Hot Deformation Behavior and Intrinsic Workability of 6063 Aluminum Alloys Using 3D Processing Map, J. Alloys Compd., 2017, 713, p 212–221. https://doi.org/10.1016/j.jallcom.2017.04.156

    Article  CAS  Google Scholar 

  17. N. Srinivasa and Y.V.R.K. Prasad, Hot Working Characteristics of Nimonic 75, 80A and 90 Superalloys: A Comparison Using Processing Maps, J. Mater. Process. Tech., 1995, 51(1–4), p 171–192.

    Article  Google Scholar 

  18. H. Wu, S.P. Wen, H. Huang, K.Y. Gao, X.L. Wu, W. Wang, and Z.R. Nie, Hot Deformation Behavior and Processing Map of a New Type Al-Zn-Mg-Er-Zr Alloy, J. Alloys Compd., 2016, 685, p 869–880.

    Article  CAS  Google Scholar 

  19. A. Kuper, H. Letaw, L. Slifkin, E. Sonder, and C.T. Tomizuka, Self-diffusion in Copper, Phys. Rev., 1954, 96(5), p 1224–1225. https://doi.org/10.1103/PhysRev.96.1224

    Article  CAS  Google Scholar 

  20. J.R. Davis, Copper and Copper Alloys, ASM international, Almere, 2001.

    Book  Google Scholar 

  21. M.J. Morgan, N.T. Switzner, C.W.S. Marchi, and D.K. Balch, Forging Strain Rate and Deformation Temperature Effects on the Fracture Toughness Properties of Type Stainless Steel Precharged with Tritium, Sandia National Lab. (SNL-NM), Albuquerque, 2017.

    Google Scholar 

  22. Y.V.R.K. Prasad and K.P. Rao, Processing Maps and Rate Controlling Mechanisms of Hot Deformation of Electrolytic Tough Pitch Copper in the Temperature Range 300–950 °C, Mater. Sci. Eng. A, 2005, 391(1–2), p 141–150.

    Article  Google Scholar 

  23. L. Zhang, K.X. Song, Y.M. Zhang, Q. Wang, and W.F. Liu, Flow Stress Constitutive Equation of Age Hardening Cu-1.1Cr Alloy during Hot Compression Deformation, Adv. Mater. Res., 2011, 213, p 623–627.

    Article  CAS  Google Scholar 

  24. G. Ji, Q. Li, K. Ding, L. Yang, and L. Li, A Physically-Based Constitutive Model for High Temperature Deformation of Cu-0.36Cr-0.03Zr Alloy, J. Alloys Compd, 2015, 648, p 397–407. https://doi.org/10.1016/j.jallcom.2015.06.264

    Article  CAS  Google Scholar 

  25. A.K. Shukla, S.V.S.N. Murty, S.C. Sharma, and K. Mondal, Constitutive Modeling of Hot Deformation Behavior of Vacuum Hot Pressed Cu-8Cr-4Nb Alloy, Mater. Des., 2015, 75, p 57–64. https://doi.org/10.1016/j.matdes.2015.03.023

    Article  CAS  Google Scholar 

  26. Y. Zhang, Z. Chai, A.A. Volinsky, H.L. Sun, B.H. Tian, P. Liu, and Y. Liu, Hot Deformation Characteristics and Processing Maps of the Cu-Cr-Zr-Ag Alloy, J. Mater. Eng. Perform., 2016, 25(3), p 1191–1198.

    Article  CAS  Google Scholar 

  27. Z. Ding, S. Jia, P. Zhao, M. Deng, and K. Song, Hot Deformation Behavior of Cu-0.6Cr-0.03Zr Alloy during Compression at Elevated Temperatures, Mater. Sci. Eng. A, 2013, 570, p 87–91. https://doi.org/10.1016/j.msea.2013.01.059

    Article  CAS  Google Scholar 

  28. Y. Zhang, H. Sun, A.A. Volinsky, B. Tian, K. Song, Z. Chai, P. Liu, and Y. Liu, Dynamic Recrystallization Behavior and Processing Map of the Cu–Cr–Zr–Nd Alloy, Springerplus, 2016 https://doi.org/10.1186/s40064-016-2317-z

    Article  Google Scholar 

  29. Y. Zhang, Z. Chai, A.A. Volinsky, B. Tian, H. Sun, P. Liu, and Y. Liu, Processing Maps for the Cu-Cr-Zr-Y Alloy Hot Deformation Behavior, Mater. Sci. Eng. A, 2016, 662, p 320–329. https://doi.org/10.1016/j.msea.2016.03.033

    Article  CAS  Google Scholar 

  30. Y. Zhang, A.A. Volinsky, H.T. Tran, Z. Chai, P. Liu, and B. Tian, Effects of Ce Addition on High Temperature Deformation Behavior of Cu-Cr-Zr Alloys, J. Mater. Eng. Perform., 2015, 24(10), p 3783–3788.

    Article  CAS  Google Scholar 

  31. P. Zhang, C. Hu, Q. Zhu, C. Ding, and H. Qin, Hot Compression Deformation and Constitutive Modeling of GH4698 Alloy, Mater. Des., 2015, 65, p 1153–1160.

    Article  CAS  Google Scholar 

  32. C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Metall, 1966, 14(9), p 1136–1138.

    Article  CAS  Google Scholar 

  33. C. Zener and J.H. Hollomon, Effect of Strain Rate upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15(1), p 22–32.

    Article  Google Scholar 

  34. S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, and D.L. Chen, Effect of Zr, v and Ti on Hot Compression Behavior of the Al-Si Cast Alloy for Powertrain Applications, J. Alloys Compd., 2014, 615, p 1019–1031. https://doi.org/10.1016/j.jallcom.2014.06.210

    Article  CAS  Google Scholar 

  35. J.Y. Yang and W.J. Kim, The Effect of Addition of Sn to Copper on Hot Compressive Deformation Mechanisms, Microstructural Evolution and Processing Maps, J. Mater. Res. Technol., 2020, 9(1), p 749–761. https://doi.org/10.1016/j.jmrt.2019.11.015

    Article  CAS  Google Scholar 

  36. W.V. Youdelis and H.Y. Wu, Interdiffusion in Copper(Rich)-Chromium Solid Solutions, Can. Metall. Q., 1975, 14(4), p 315–318.

    Article  CAS  Google Scholar 

  37. D.B. Butrymowicz, J.R. Manning, and M.E. Read, Diffusion in Copper and Copper Alloys Part V. Diffusion in Systems Involving Elements of Group VA, J. Phys. Chem. Ref. Data, 1977, 6(1), p 1–50.

    Article  CAS  Google Scholar 

  38. N. Jin, H. Zhang, Y. Han, W. Wu, and J. Chen, Hot Deformation Behavior of 7150 Aluminum Alloy during Compression at Elevated Temperature, Mater. Charact., 2009, 60(6), p 530–536. https://doi.org/10.1016/j.matchar.2008.12.012

    Article  CAS  Google Scholar 

  39. M.J. Luton and C.M. Sellars, Dynamic Recrystallization in Nickel and Nickel-Iron Alloys during High Temperature Deformation, Acta Metall., 1969, 17(8), p 1033–1043.

    Article  CAS  Google Scholar 

  40. D. Padmavardhani and Y.V.R.K. Prasad, Effect of Zinc Content on the Processing Map for Hot Working of α Brass, Mater. Sci. Eng. A, 1992, 157(1), p 43–51.

    Article  Google Scholar 

  41. R.R. Bourassa and B. Lengeler, The Formation and Migration Energies of Vacancies in Quenched Copper, J. Phys. F Met. Phys., 1976, 6(8), p 1405–1413.

    Article  CAS  Google Scholar 

  42. E. Diagram, The Cr-Cu (Chromium-Copper) System, Bull. Alloy Phase Diagr., 1984, 5(1), p 59–68.

    Article  Google Scholar 

  43. D.J. Chakrabarti, The Cu-Nb (Copper-Nloblum) System, Phys. Rev. B, 1979, 29, p 133787.

    Google Scholar 

  44. G. Zhou, H. Ding, F. Cao, and B. Zhang, A Comparative Study of Various Flow Instability Criteria in Processing Map of Superalloy GH4742, J. Mater. Sci. Technol., 2014, 30, p 217–222.

    Article  CAS  Google Scholar 

  45. Y.V.R.K. Prasad, Processing Maps: A Status Report, J. Mater. Eng. Perform., 2013, 22(10), p 2867–2874.

    Article  CAS  Google Scholar 

  46. S. Murty, B.N. Rao, and B.P. Kashyap, Instability Criteria for Hot Deformation of Materials, Int. Mater. Rev., 2000, 45(1), p 15–26.

    Article  CAS  Google Scholar 

  47. S. Ugender, A. Kumar, and A.S. Reddy, Microstructure and Mechanical Properties of AZ31B Magnesium Alloy by Friction Stir Welding, Proced. Mater. Sci., 2014, 6, p 1600–1609. https://doi.org/10.1016/j.mspro.2014.07.143

    Article  CAS  Google Scholar 

  48. Y.V.R.K. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43(6), p 243–258. https://doi.org/10.1179/imr.1998.43.6.243

    Article  CAS  Google Scholar 

  49. R. Kaibyshev, T. Sakai, H. Miura, J.J. Jonas, and A. Belyakov, Dynamic and Post-Dynamic Recrystallization under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater. Sci., 2013, 60, p 130–207. https://doi.org/10.1016/j.pmatsci.2013.09.002

    Article  CAS  Google Scholar 

  50. N. Ravichandran and Y.V.R.K. Prasad, Influence of Oxygen on Dynamic Recrystallization during Hot Working of Polycrystalline Copper, Mater. Sci. Eng. A, 1992, 156(2), p 195–204.

    Article  Google Scholar 

  51. Z. Xue, L. Gu, Y. Ren, X. Hao, and P. Xu, Deformation Behavior and Processing Parameters of Cu-3Ag-0.6Zr Alloy during Compression at Elevated Temperatures, MATEC Web Conf., 2016, 67, p 03031.

    Article  Google Scholar 

  52. M.H. Wang, Y.C. Yang, S.L. Tu, and K. Wei, A Modified Constitutive Model and Hot Compression Instability Behavior of Cu-Ag Alloy, Trans. Nonferrous Met. Soc. China, 2019, 29(4), p 764–774. https://doi.org/10.1016/S1003-6326(19)64986-1

    Article  CAS  Google Scholar 

  53. H. Zhang, H. Zhang, and L. Li, Hot Deformation Behavior of Cu-Fe-P Alloys during Compression at Elevated Temperatures, J. Mater. Process. Technol., 2009, 209(6), p 2892–2896.

    Article  CAS  Google Scholar 

  54. L. Blaz and A. Nowotnik, High Temperature Deformation of Aluminium Bronze, Mater. Sci. Technol., 2001, 17(8), p 971–975.

    Article  CAS  Google Scholar 

  55. Y. Zhang, H.L. Sun, A.A. Volinsky, B.H. Tian, Z. Chai, P. Liu, and Y. Liu, Characterization of the Hot Deformation Behavior of Cu-Cr-Zr Alloy by Processing Maps, Acta Metall. Sin., 2016, 29(5), p 422–430.

    Article  CAS  Google Scholar 

  56. H. Chen, P. Gao, H. Peng, H. Wei, W. Xie, H. Wang, and B. Yang, Study on the Hot Deformation Behavior and Microstructure Evolution of Cu-Cr-In Alloy, J. Mater. Eng. Perform., 2019, 28(4), p 2128–2136. https://doi.org/10.1007/s11665-019-03961-z

    Article  CAS  Google Scholar 

  57. Q. Lei, Z. Li, J. Wang, S. Li, L. Zhang, and Q. Dong, High-Temperature Deformation Behavior of Cu-6.0Ni-1.0Si-0.5Al-0.15 Mg-0.1Cr Alloy, J. Mater. Sci., 2012, 47(16), p 6034–6042.

    Article  CAS  Google Scholar 

  58. L. Zhang, Z. Li, Q. Lei, W.T. Qiu, and H.T. Luo, Hot Deformation Behavior of Cu-8.0Ni-1.8Si-0.15Mg Alloy, Mater. Sci. Eng. A, 2011, 528(3), p 1641–1647.

    Article  Google Scholar 

  59. H. Sun, Y. Zhang, A.A. Volinsky, B. Wang, B. Tian, K. Song, Z. Chai, and Y. Liu, Effects of Ag Addition on Hot Deformation Behavior of Cu–Ni–Si Alloys, Adv. Eng. Mater., 2017, 19(3), p 1–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank their colleagues at Material Characterization Division (VSSC) for the support rendered in metallography of the samples. The authors would also like to thank Director, Vikram Sarabhai Space Centre, Trivandrum, for his kind permission to publish this work. The authors would like to acknowledge-the DST-FIST program for funding FESEM-EBSD facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chenna Krishna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishna, S.C., Muneshwar, P., Pant, B. et al. Hot Deformation Behavior and Processing Map of Cu-Cr-Nb-Zr Alloy. J. of Materi Eng and Perform 31, 1325–1337 (2022). https://doi.org/10.1007/s11665-021-06268-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06268-0

Keywords

Navigation