Skip to main content

Advertisement

Log in

Microstructure and Deformation Mechanism of AZ31 Magnesium Alloy Under Dynamic Strain Rate

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A hot-rolled AZ31Mg alloy sheet was subjected to dynamic plastic deformation parallel to the rolling direction, and microstructural evolutions and mechanical properties of the deformed samples were examined. It has been found that dynamic strain rate could facilitate {10-12} twin nucleation and growth and leads to a lower yield stress of about 20 MPa and an early end to twinning characteristic (happening at a strain point of about 6%) shown in the stress–strain curve. {10-12} twinning mechanism dominates the early plastic deformation; but when plastic strain exceeds ~ 9%, dislocation–slip mechanism instead of {10-12} twinning dominates the later plastic deformation. And this premature transformation of the dominant deformation mechanisms from {10-12} twinning to dislocation slip is caused by dynamic strain rate. The effect of dynamic strain rate on the number of twin nucleations remains unclear, and the more systematic researches are needed in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Akhtar and E. Teghtsoonnian, Solid Solution Strengthening of Magnesium Single Crystals—II. The Effect of Solute on the Ease of Prismatic Slip, Acta Metall., 1969, 17(11), p 1351–1356

    Article  CAS  Google Scholar 

  2. G. Groves and A. Kelly, Independent Slip Systems in Crystals, Philos. Mag., 1963, 8(89), p 877–887

    Article  CAS  Google Scholar 

  3. B. Pourbahari, H. Mirzadeh, and M. Emamy, The Effects of Grain Refinement and Rare Earth Intermetallics on Mechanical Properties of As-Cast and Wrought Magnesium Alloys, J. Mater. Eng. Perform., 2018, 27(3), p 1327–1333

    Article  CAS  Google Scholar 

  4. E.W. Kelley and W.F. Hosford, The Deformation Characteristics of Textured Magnesium, Trans. Metall. Soc. AIME, 1968, 242, p 654–661

    CAS  Google Scholar 

  5. J.W. Christian and S. Mahajan, Deformation Twinning, Prog. Mater Sci., 1995, 39, p 1–157

    Article  Google Scholar 

  6. M.T. Prado, J.A. Valle, and O.A. Ruano, Effect of Sheet Thickness on the Microstructure Evolution of an Mg Alloy During Large Strain Hot Rolling, Scr. Mater., 2004, 50, p 667–671

    Article  Google Scholar 

  7. L.E. Murr, E. Moin, and F. Greulich, The Contribution of Deformation Twins to Yield Stress: The Hall–Petch Law for Inter-Twin Spacing, Scr. Metall., 1978, 12, p 1031–1035

    Article  CAS  Google Scholar 

  8. M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell, Influence of Grain Size on the Compressive Deformation of Wrought Mg-3Al-1Zn, Acta Mater., 2004, 52, p 5093–5103

    Article  CAS  Google Scholar 

  9. X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, and R.H. Wagoner, Hardening Evolution of AZ31B Mg Sheet, Int. J. Plast, 2007, 23, p 44–86

    Article  CAS  Google Scholar 

  10. L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, and K. Lu, Ultrahigh Strength and High Electrical Conductivity in Copper, Science, 2004, 304, p 422–426

    Article  CAS  Google Scholar 

  11. L. Lu, X.H. Chen, X. Huang, and K. Lu, Revealing the Maximum Strength in Nanotwinned Copper, Science, 2009, 323, p 607–610

    Article  CAS  Google Scholar 

  12. Y.C. Lin, Z.H. Liu, X.M. Chen, and Z.L. Long, Cyclic Plasticity Constitutive Model for Uniaxial Ratcheting Behavior of AZ31B Magnesium Alloy, J. Mater. Eng. Perform., 2015, 24(5), p 1820–1833

    Article  CAS  Google Scholar 

  13. C. Lou, X.Y. Zhang, and Y. Ren, Improved Strength and Ductility of Magnesium Alloy Below Micro-twin Lamellar Structure, Mater. Sci. Eng. A, 2014, 614, p 1–5

    Article  CAS  Google Scholar 

  14. Q. Yu, L. Qi, K. Chen, R.K. Mishra, J. Li, and A.M. Minor, The Nanostructured Origin of Deformation Twinning, Nano Lett., 2012, 12, p 887–892

    Article  CAS  Google Scholar 

  15. S.G. Hong, S.H. Park, and C.S. Lee, Role of 10–12 Twinning Characteristics in the Deformation Behavior of a Polycrystalline Magnesium Alloy, Acta Mater., 2010, 58, p 5873–5885

    Article  CAS  Google Scholar 

  16. C. Lou, X.Y. Zhang, G.L. Duan, J. Tu, and Q. Liu, Characteristics of Twin Lamellar Structure in Magnesium Alloy during Room Temperature Dynamic Plastic Deformation, J. Mater. Sci. Technol., 2014, 30(1), p 41–46

    Article  CAS  Google Scholar 

  17. N.V. Dudamell, I. Ulacia, F. Gálvez, S. Yi, J. Bohlen, D. Letzig, I. Hurtado, and M.T. Pérez-Prado, Twinning and Grain Subdivision During Dynamic Deformation of a Mg AZ31 Sheet Alloy at Room Temperature, Acta Mater., 2011, 59, p 6949–6962

    Article  CAS  Google Scholar 

  18. X.Y. Zhang, B. Li, and Q. Liu, Non-equilibrium Basal Stacking Faults in Hexagonal Close-Packed Metals, Acta Mater., 2015, 90, p 140–150

    Article  CAS  Google Scholar 

  19. W.W. Jian, G.M. Cheng, W.Z. Xu, H. Yuan, M.H. Tsai, Q.D. Wang, C.C. Koch, Y.T. Zhu, and S.N. Mathaudhu, Ultrastrong Mg Alloy Via Nano-spaced Stacking Faults, Mater. Res. Lett., 2013, 1, p 61–66

    Article  CAS  Google Scholar 

  20. B.S. Wang, R.L. Xin, G.J. Huang, and Q. Liu, Effect of Crystal Orientation on the Mechanical Properties and Strain Hardening Behavior of Magnesium Alloy AZ31 During Uniaxial Compression, Mater. Sci. Eng. A, 2012, 534, p 588–593

    Article  CAS  Google Scholar 

  21. C. Lou, X.Y. Zhang, and Y. Ren, Non-Schmid-Based 10–12 Twinning Behavior in Polycrystalline Magnesium Alloy, Mater. Charact., 2015, 107, p 249–254

    Article  CAS  Google Scholar 

  22. M.D. Nave and M.R. Barnett, Microstructures and Textures of Pure Magnesium Deformed in Plane-Strain Compression, Scr. Mater., 2004, 51, p 881–885

    Article  CAS  Google Scholar 

  23. S. Kleiner and P.J. Uggowitzer, Mechanical Anisotropy of Extruded Mg-6% Al-1% Zn Alloy, Mater. Sci. Eng. A, 2004, 379, p 258–263

    Article  Google Scholar 

  24. M.A. Meyers, O. Vohringer, and V.A. Lubarda, The Onset of Twinning in Metals: A Constitutive Description, Acta Mater., 2001, 49, p 4025–4039

    Article  CAS  Google Scholar 

  25. C. Lou, X.Y. Zhang, R.H. Wang, and Q. Liu, Mechanical Behavior and Microstructural Characteristics of Magnesium Alloy Containing 10–12 Twin Lamellar Structure, J. Mater. Res., 2013, 28, p 733–739

    Article  CAS  Google Scholar 

  26. K. Lu, L. Lu, and S. Suresh, Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale, Science, 2009, 324, p 349–352

    Article  CAS  Google Scholar 

  27. L. Capolungo, P.E. Marshall, R.J. McCabe, I.J. Beyerlein, and C.N. Tome, Nucleation and Growth of Twins in Zr: A Statistical Study, Acta Mater., 2009, 57, p 6047–6056

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 51601025), Chongqing Research Program of Basic Research and Frontier Technology (Nos. cstc2016jcyjA0553 and cstc2017jcyjA1019) and Scientific and Technological Research Program of Chongqing Municipal Education Commission (Nos. KJ1705117 and KJ1601302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiyan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, C., Sun, Q., Yang, Q. et al. Microstructure and Deformation Mechanism of AZ31 Magnesium Alloy Under Dynamic Strain Rate. J. of Materi Eng and Perform 27, 6189–6195 (2018). https://doi.org/10.1007/s11665-018-3627-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3627-9

Keywords

Navigation