Skip to main content
Log in

Wire Arc Additive Manufacturing: A Comprehensive Review and Research Directions

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Over the past years, the demand for the wire arc additive manufacturing (WAAM) is potentially increased, and it has become a promising alternative to subtractive manufacturing. Research reported that the wire arc additively manufactured (WAAMed) material’s mechanical properties are comparable to wrought or cast material. In comparison with other fusion sources, WAAM offers a significant cost saving and a higher deposition rate. However, there are significant challenges associated with WAAM such as undesirable microstructures and mechanical properties, high residual stresses, and distortion. Thus, more research is still needed to handle the above challenges by optimizing the process parameters and post-deposition heat treatment. In line with the above, this paper attempts to fill the gap by presenting a comprehensive review of WAAM literature including stagewise development of WAAM, metals and alloys used, effects of process parameters, methodologies used by various researchers to improve the quality of WAAM component. Besides, this work proposes the areas that could be used as avenues for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C. Su, X. Chen, C. Gao and Y. Wang, Effect of Heat Input on Microstructure and Mechanical Properties of Al-Mg Alloys Fabricated by WAAM, Appl. Surf. Sci., 2019, 486, p 431–440. https://doi.org/10.1016/j.apsusc.2019.04.255

    Article  CAS  Google Scholar 

  2. ASTM International. F2792-12a - Standard Terminology for Additive Manufacturing Technologies. Rapid. Manuf. Assoc. (2013), pp. 10–2. https://doi.org/https://doi.org/10.1520/F2792-12A.2

  3. O. Ivanova, C. Williams and T. Campbell, Additive Manufacturing (AM) and Nanotechnology: Promises and Challenges, Rapid Prototyp. J., 2013, 19, p 353–364. https://doi.org/10.1108/RPJ-12-2011-0127

    Article  Google Scholar 

  4. M. Dinovitzer, X. Chen, J. Laliberte, X. Huang and H. Frei, Effect of Wire and Arc Additive Manufacturing (WAAM) Process Parameters on Bead Geometry and Microstructure, Addit. Manuf., 2019, 26, p 138–146. https://doi.org/10.1016/j.addma.2018.12.013

    Article  CAS  Google Scholar 

  5. S.W. Williams, F. Martina, A.C. Addison, J. Ding, G. Pardal and P. Colegrove, Wire + Arc Additive Manufacturing, Mater. Sci. Technol. (United Kingdom), 2016, 32, p 641–647. https://doi.org/10.1179/1743284715Y.0000000073

    Article  CAS  Google Scholar 

  6. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski et al., Additive Manufacturing of Metallic Components—Process, Structure and Properties, Prog. Mater. Sci., 2018, 92, p 112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  CAS  Google Scholar 

  7. S. Reddy, V. Madhava and C.S. Reddy, 3-D Printing Technologies and Processes—A Review International Organization of Scientific Research, IOSR J. Eng., 2017, 07, p 1–14.

    Google Scholar 

  8. J.M. Flynn, A. Shokrani, S.T. Newman and V. Dhokia, Hybrid Additive and Subtractive Machine Tools—Research and Industrial Developments, Int. J. Mach. Tools Manuf., 2016, 101, p 79–101. https://doi.org/10.1016/j.ijmachtools.2015.11.007

    Article  Google Scholar 

  9. P.K. Gokuldoss, S. Kolla and J. Eckert, Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting-Selection Guidelines, Materials (Basel), 2017 https://doi.org/10.3390/ma10060672

    Article  Google Scholar 

  10. H. Bikas, P. Stavropoulos and G. Chryssolouris, Additive Manufacturing Methods and Modeling Approaches: A Critical Review, Int. J. Adv. Manuf. Technol., 2016, 83, p 389–405. https://doi.org/10.1007/s00170-015-7576-2

    Article  Google Scholar 

  11. N. Guo and M.C. Leu, Additive Manufacturing: Technology, Applications and Research Needs, Front. Mech. Eng., 2013, 8, p 215–243. https://doi.org/10.1007/s11465-013-0248-8

    Article  Google Scholar 

  12. J.D. Spencer, P.M. Dickens and C.M. Wykes, Rapid Prototyping of Metal Parts by Three-Dimensional Welding, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 1998, 212, p 175–182. https://doi.org/10.1243/0954405981515590

    Article  Google Scholar 

  13. Y.M. Zhang, Y. Chen, P. Li and A.T. Male, Weld Deposition-Based Rapid Prototyping: A Preliminary Study, J. Mater. Process. Technol., 2003, 135, p 347–357. https://doi.org/10.1016/S0924-0136(02)00867-1

    Article  Google Scholar 

  14. J.H. Ouyang, H. Wang and R. Kovacevic, Rapid Prototyping of 5356-Aluminum Alloy Based on Variable Polarity Gas Tungsten Arc Welding: Process Control and Microstructure, Mater. Manuf. Process., 2002, 17, p 103–124. https://doi.org/10.1081/AMP-120002801

    Article  CAS  Google Scholar 

  15. P. Kazanas, P. Deherkar, P. Almeida, H. Lockett and S. Williams, Fabrication of Geometrical Features Using Wire and Arc Additive Manufacture, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2012, 226, p 1042–1051. https://doi.org/10.1177/0954405412437126

    Article  Google Scholar 

  16. C.R. Cunningham, J.M. Flynn, A. Shokrani, V. Dhokia and S.T. Newman, Invited Review Article: Strategies and Processes for High Quality Wire Arc Additive Manufacturing, Addit. Manuf., 2018, 22, p 672–686. https://doi.org/10.1016/j.addma.2018.06.020

    Article  Google Scholar 

  17. A. Horgar, H. Fostervoll, B. Nyhus, X. Ren, M. Eriksson and O.M. Akselsen, Additive Manufacturing Using WAAM with AA5183 Wire, J. Mater. Process. Technol., 2018, 259, p 68–74. https://doi.org/10.1016/j.jmatprotec.2018.04.014

    Article  CAS  Google Scholar 

  18. W.E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform., 2014, 23, p 1917–1928. https://doi.org/10.1007/s11665-014-0958-z

    Article  CAS  Google Scholar 

  19. J.L. Prado-Cerqueira, J.L. Diéguez and A.M. Camacho, Preliminary Development of a Wire and Arc Additive Manufacturing System (WAAM), Procedia Manuf., 2017, 13, p 895–902. https://doi.org/10.1016/j.promfg.2017.09.154

    Article  Google Scholar 

  20. D. Ding, Z. Pan, D. Cuiuri and H. Li, Wire-Feed Additive Manufacturing of Metal Components: Technologies, Developments and Future Interests, Int. J. Adv. Manuf. Technol., 2015, 81, p 465–481. https://doi.org/10.1007/s00170-015-7077-3

    Article  Google Scholar 

  21. W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff and S.S. Babu, The Metallurgy and Processing Science of Metal Additive Manufacturing, Int. Mater. Rev., 2016, 61, p 315–360. https://doi.org/10.1080/09506608.2015.1116649

    Article  CAS  Google Scholar 

  22. V. Bhavar, P. Kattire, V. Patil, S. Khot, K. Gujar and R. Singh, A Review on Powder Bed Fusion Technology of Metal Additive Manufacturing, Addit. Manuf. Handb. Prod. Dev. Def. Ind., 2017 https://doi.org/10.1201/9781315119106

    Article  Google Scholar 

  23. B. Dutta, F.H. Froes (Sam). The Additive Manufacturing (AM) of titanium alloys. Met. Powder. Rep. 72: 96–106 (2017). https://doi.org/https://doi.org/10.1016/j.mprp.2016.12.062

  24. I. Tabernero, A. Paskual, P. Álvarez and A. Suárez, Study on Arc Welding Processes for High Deposition Rate Additive Manufacturing, Procedia CIRP, 2018, 68, p 358–362. https://doi.org/10.1016/j.procir.2017.12.095

    Article  Google Scholar 

  25. J.Y. Bai, C.L. Fan, S. Lin, C.L. Yang and B.L. Dong, Effects of Thermal Cycles on Microstructure Evolution of 2219-Al During GTA-Additive Manufacturing, Int. J. Adv. Manuf. Technol., 2016, 87, p 2615–2623. https://doi.org/10.1007/s00170-016-8633-1

    Article  Google Scholar 

  26. R. Baker, Method of making decorative articles. U.S. Pat. 1925:1–3

  27. Eschholz OH, Ornamental Arc Welding, U.S. Patent 1533239, 1925

  28. H.K. Shockey, Machine for Reclaiming Worn Brake Drum, ACM SIGGRAPH Comput. Graph, 1930, 28, p 131–134. https://doi.org/10.1145/178951.178972

    Article  Google Scholar 

  29. A. Ujiie, US3558846A—Method of and Apparatus for Constructing Substantially Circular Cross Section Vessel by Welding. Google Patents (1966)

  30. P. Conference, D. Hauber, S. Foundation, A. Arbor, United States Patent (19) (2009)

  31. P.M. Sequeira Almeida, S. Williams, Innovative process model of Ti-6Al-4V additive layer manufacturing using cold metal transfer (CMT). 21st Annu Int Solid Free Fabr Symp—An Addit Manuf Conf SFF (2010) 2010: 25–36

  32. https://www.gefertec.de/en/start-2/ n.d. https://www.gefertec.de/en/start-2/

  33. Company Website. Keystone Synergistic Enterprises n.d. https://www.keystonehq.com/ (accessed September 8, 2020)

  34. Website C. Norsk Titanium | Technology n.d. https://www.norsktitanium.com/technology (accessed September 8, 2020)

  35. G. Venturini, F. Montevecchi, F. Bandini, A. Scippa and G. Campatelli, Feature Based Three Axes Computer Aided Manufacturing Software for Wire Arc Additive Manufacturing Dedicated to Thin Walled Components, Addit. Manuf., 2018, 22, p 643–657. https://doi.org/10.1016/j.addma.2018.06.013

    Article  CAS  Google Scholar 

  36. MX3D A smarter bridge n.d. https://mx3d.com/projects/smart-bridge/

  37. A.C.M. Bekker and J.C. Verlinden, Life Cycle Assessment of Wire + arc Additive Manufacturing Compared to Green Sand Casting and CNC Milling in Stainless Steel, J. Clean. Prod., 2018, 177, p 438–447. https://doi.org/10.1016/j.jclepro.2017.12.148

    Article  Google Scholar 

  38. Y. Nie, P. Zhang, X. Wu, G. Li, H. Yan and Z. Yu, Rapid Prototyping of 4043 Al-Alloy Parts by Cold Metal Transfer, Sci. Technol. Weld. Join., 2018, 23, p 527–535. https://doi.org/10.1080/13621718.2018.1438236

    Article  CAS  Google Scholar 

  39. M.R.U. Ahsan, A.N.M. Tanvir, G.J. Seo, B. Bates, W. Hawkins, C. Lee et al., Heat-Treatment Effects on a Bimetallic Additively-Manufactured Structure (BAMS) of the Low-Carbon Steel and Austenitic-Stainless Steel, Addit. Manuf., 2020, 32, p 101036. https://doi.org/10.1016/j.addma.2020.101036

    Article  CAS  Google Scholar 

  40. P.O. Noble, Method and Apparatus for Electric Arc Welding, U.S. Patent 1898060, (1933)

  41. R. Carpenter Otis, H. J. K., “Method and Apparatus for Metal Coating Metal Pipes by Electric Fusion,”U.S. Patent 2427350, (1947)

  42. White W. Pressure Roller and Method of Manufacture, U.S. Patent 3156968, (1964)

  43. H. Brandi, Method of Making Large Structural One-Piece Parts of Metal, Particularly One-Piece Shafts, U.S. Patent 3985995, (1976)

  44. R. Acheson, Automatic welding apparatus for weld build-up and method of achieving weld build-up, U.S. Patent 4952769 (1990)

  45. Y.A. Song, S. Park, D. Choi and H. Jee, 3D Welding and Milling: Part I-a Direct Approach for Freeform Fabrication of Metallic Prototypes, Int. J. Mach. Tools Manuf., 2005, 45, p 1057–1062. https://doi.org/10.1016/j.ijmachtools.2004.11.021

    Article  Google Scholar 

  46. G. Anzalone, C. Zhang, B. Wijnen, P. Sanders, J. Pearce, et al., A Low-Cost Open-Source Metal 3-D Printer, IEEE Access, IEEE, Vol. 1, pp. 803–810 (2013). https://doi.org/10.1109/ACCESS.2013.2293018.hal-02119701

  47. J.S. Gaddes, Parametric Development of Wire 3D Printing (2015)

  48. S. Ríos, P.A. Colegrove and S.W. Williams, Metal Transfer Modes in Plasma Wire + Arc Additive Manufacture, J. Mater. Process. Technol., 2019, 264, p 45–54. https://doi.org/10.1016/j.jmatprotec.2018.08.043

    Article  Google Scholar 

  49. G. Marinelli, F. Martina, S. Ganguly, S. Williams, H. Lewtas, D. Hancock et al., Microstructure and Thermal Properties of Unalloyed Tungsten Deposited by Wire + Arc Additive Manufacture, J. Nucl. Mater., 2019, 522, p 45–53. https://doi.org/10.1016/j.jnucmat.2019.04.049

    Article  CAS  Google Scholar 

  50. J. Xiong, G. Zhang, Z. Qiu and Y. Li, Vision-Sensing and Bead Width Control of a Single-Bead Multi-Layer Part: Material and Energy Savings in GMAW-Based Rapid Manufacturing, J. Clean. Prod., 2013, 41, p 82–88. https://doi.org/10.1016/j.jclepro.2012.10.009

    Article  Google Scholar 

  51. J. Xiong, G. Zhang, H. Gao and L. Wu, Modeling of Bead Section Profile and Overlapping Beads with Experimental Validation for Robotic GMAW-Based Rapid Manufacturing, Robot. Comput. Integr. Manuf., 2013, 29, p 417–423. https://doi.org/10.1016/j.rcim.2012.09.011

    Article  Google Scholar 

  52. D. Ding, Z. Pan, D. Cuiuri and H. Li, A Multi-Bead Overlapping Model for Robotic Wire and Arc Additive Manufacturing (WAAM), Robot. Comput. Integr. Manuf., 2015, 31, p 101–110. https://doi.org/10.1016/j.rcim.2014.08.008

    Article  Google Scholar 

  53. Y. Ma, D. Cuiuri, N. Hoye, H. Li and Z. Pan, The Effect of Location on the Microstructure and Mechanical Properties of Titanium Aluminides Produced by Additive Layer Manufacturing Using in-situ Alloying and Gas Tungsten Arc Welding, Mater. Sci. Eng. A, 2015, 631, p 230–240. https://doi.org/10.1016/j.msea.2015.02.051

    Article  CAS  Google Scholar 

  54. D. Ding, Z. Pan, D. Cuiuri and H. Li, A Tool-Path Generation Strategy for Wire and Arc Additive Manufacturing, Int. J. Adv. Manuf. Technol., 2014, 73, p 173–183. https://doi.org/10.1007/s00170-014-5808-5

    Article  Google Scholar 

  55. P.A. Colegrove, H.E. Coules, J. Fairman, F. Martina, T. Kashoob, H. Mamash et al., Microstructure and Residual Stress Improvement in Wire and Arc Additively Manufactured Parts Through High-Pressure Rolling, J. Mater. Process. Technol., 2013, 213, p 1782–1791. https://doi.org/10.1016/j.jmatprotec.2013.04.012

    Article  Google Scholar 

  56. B. Wu, Z. Pan, D. Ding, D. Cuiuri, H. Li, J. Xu et al., A Review of the Wire Arc Additive Manufacturing of Metals: Properties, Defects and Quality Improvement, J. Manuf. Process., 2018, 35, p 127–139. https://doi.org/10.1016/j.jmapro.2018.08.001

    Article  Google Scholar 

  57. X. Chen, J. Li, X. Cheng, B. He, H. Wang and Z. Huang, Microstructure and Mechanical Properties of the Austenitic Stainless Steel 316L Fabricated by Gas Metal Arc Additive Manufacturing, Mater. Sci. Eng. A, 2017, 703, p 567–577. https://doi.org/10.1016/j.msea.2017.05.024

    Article  CAS  Google Scholar 

  58. J.N. Pires, A. Loureiro, G. Bölmsjo, Welding Robotics: Technology, System Issues and Application. (2006). https://doi.org/10.1007/1-84628-191-1 Hardcover ISBN

  59. C. Zhang, G. Li, M. Gao, J. Yan and X.Y. Zeng, Microstructure and Process Characterization of Laser-Cold Metal Transfer Hybrid Welding of AA6061 Aluminum Alloy, Int. J. Adv. Manuf. Technol., 2013, 68, p 1253–1260. https://doi.org/10.1007/s00170-013-4916-y

    Article  Google Scholar 

  60. Y. Ma, D. Cuiuri, H. Li, Z. Pan and C. Shen, The Effect of Postproduction Heat Treatment on γ-TiAl Alloys Produced by the GTAW-Based Additive Manufacturing Process, Mater. Sci. Eng. A, 2016, 657, p 86–95. https://doi.org/10.1016/j.msea.2016.01.060

    Article  CAS  Google Scholar 

  61. B. Wu, Quality Improvement in Wire Arc Additive Manufacturing, Doctor of Philosophy thesis, School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong (2018). https://ro.uow.edu.au/theses1/473

  62. D. Ding, C. Shen, Z. Pan, D. Cuiuri, H. Li, N. Larkin et al., Towards an Automated Robotic Arc-Welding-Based Additive Manufacturing System from CAD to Finished Part, CAD Comput. Aided Des., 2016, 73, p 66–75. https://doi.org/10.1016/j.cad.2015.12.003

    Article  Google Scholar 

  63. T. Tarn and S. Chen, Welding, Intell. Autom., 2014 https://doi.org/10.1007/978-3-319-18997-0

    Article  Google Scholar 

  64. D. Ding, Z. Pan, D. Cuiuri, H. Li, S. van Duin, Advanced Design for Additive Manufacturing: 3D Slicing and 2D Path Planning. New Trends 3D Print, 3–24 (2016). https://doi.org/https://doi.org/10.5772/63042

  65. Y.K. Bandari, S.W. Williams, J. Ding, F. Martina, Additive Manufacture of Large Structures: Robotic or CNC Systems? Proc - 26th Annu Int Solid Free Fabr Symp—An Addit Manuf Conf SFF 2015 2020:17–25

  66. J. Xiong, Z. Yin and W. Zhang, Closed-Loop Control of Variable Layer width for Thin-Walled Parts in Wire and Arc Additive Manufacturing, J. Mater. Process. Technol., 2016, 233, p 100–106. https://doi.org/10.1016/j.jmatprotec.2016.02.021

    Article  Google Scholar 

  67. J. Xiong, Y. Zhang and Y. Pi, Control of Deposition Height in WAAM using Visual Inspection of Previous and Current Layers, J. Intell. Manuf., 2020 https://doi.org/10.1007/s10845-020-01634-6

    Article  Google Scholar 

  68. S. Zhang, J. Li, H. Kou, J. Yang, G. Yang and J. Wang, Effects of Thermal History on the Microstructure Evolution of Ti-6Al-4V During Solidification, J. Mater. Process. Technol., 2016, 227, p 281–287. https://doi.org/10.1016/j.jmatprotec.2015.08.030

    Article  CAS  Google Scholar 

  69. H. Geng, J. Li, J. Xiong, X. Lin and F. Zhang, Optimization of Wire Feed for GTAW Based Additive Manufacturing, J. Mater. Process. Technol., 2017, 243, p 40–47. https://doi.org/10.1016/j.jmatprotec.2016.11.027

    Article  CAS  Google Scholar 

  70. Y. Tian, J. Shen, S. Hu, Z. Wang and J. Gou, Microstructure and Mechanical Properties of Wire and Arc Additive Manufactured Ti-6Al-4V and AlSi5 Dissimilar Alloys Using Cold Metal Transfer Welding, J. Manuf. Process., 2019, 46, p 337–344. https://doi.org/10.1016/j.jmapro.2019.09.006

    Article  Google Scholar 

  71. B. Wu, Z. Qiu, Z. Pan, K. Carpenter, T. Wang, D. Ding et al., Enhanced Interface Strength in Steel-Nickel Bimetallic Component Fabricated Using Wire Arc Additive Manufacturing With Interweaving Deposition Strategy, J. Mater. Sci. Technol., 2020, 52, p 226–234. https://doi.org/10.1016/j.jmst.2020.04.019

    Article  CAS  Google Scholar 

  72. Y. Tian, J. Shen, S. Hu, J. Gou and E. Kannatey-Asibu, Wire and Arc Additive Manufactured Ti–6Al–4V/Al–6.25Cu Dissimilar Alloys by CMT-Welding: Effect of Deposition Order on Reaction Layer, Sci. Technol. Weld. Join., 2020, 25, p 73–80. https://doi.org/10.1080/13621718.2019.1629379

    Article  Google Scholar 

  73. A. Rajesh Kannan, S. Mohan Kumar, N. Pravin Kumar, N. Siva Shanmugam, A.S. Vishnu and Y. Palguna, Process-Microstructural Features for Tailoring Fatigue Strength of Wire Arc Additive Manufactured Functionally Graded Material of SS904L and Hastelloy C-276, Mater Lett, 2020, 274, p 127968. https://doi.org/10.1016/j.matlet.2020.127968

    Article  CAS  Google Scholar 

  74. X. Zhang, Q. Zhou, K. Wang, Y. Peng, J. Ding, J. Kong et al., Study on Microstructure and Tensile Properties of High Nitrogen Cr-Mn Steel Processed by CMT Wire and Arc Additive Manufacturing, Mater. Des., 2019, 166, p 107611. https://doi.org/10.1016/j.matdes.2019.107611

    Article  CAS  Google Scholar 

  75. W. Yangfan, C. Xizhang and S. Chuanchu, Microstructure and Mechanical Properties of Inconel 625 Fabricated by Wire-Arc Additive Manufacturing, Surf. Coatings Technol., 2019, 374, p 116–123. https://doi.org/10.1016/j.surfcoat.2019.05.079

    Article  CAS  Google Scholar 

  76. C. Zhang, Y. Li, M. Gao and X. Zeng, Wire Arc Additive Manufacturing of Al-6Mg Alloy Using Variable Polarity Cold Metal Transfer Arc as Power Source, Mater. Sci. Eng. A, 2018, 711, p 415–423. https://doi.org/10.1016/j.msea.2017.11.084

    Article  CAS  Google Scholar 

  77. B. Cong, J. Ding and S. Williams, Effect of Arc Mode in Cold Metal Transfer Process on Porosity of Additively Manufactured Al-6 3 % Cu Alloy, Int. J. Adv. Manuf. Technol., 2015 https://doi.org/10.1007/s00170-014-6346-x

    Article  Google Scholar 

  78. K.F. Ayarkwa, S.W. Williams and J. Ding, Assessing the Effect of TIG Alternating Current Time Cycle on Aluminium Wire + Arc Additive Manufacture, Addit. Manuf., 2017, 18, p 186–193. https://doi.org/10.1016/j.addma.2017.10.005

    Article  CAS  Google Scholar 

  79. C. Gao, X. Chen, X. Chen and C. Su, Microstructure and Mechanical Properties of as-Deposited and Heat-Treated Additive Manufactured 9Cr Steel, Mater. Sci. Technol. (United Kingdom), 2019, 35, p 2234–2242. https://doi.org/10.1080/02670836.2019.1668603

    Article  CAS  Google Scholar 

  80. J.R. Hönnige, P.A. Colegrove, S. Ganguly, E. Eimer, S. Kabra and S. Williams, Control of Residual Stress and Distortion in Aluminium Wire + Arc Additive Manufacture with Rolling, Addit. Manuf., 2018, 22, p 775–783. https://doi.org/10.1016/j.addma.2018.06.015

    Article  CAS  Google Scholar 

  81. B. Wu, Z. Pan, S. Li, D. Cuiuri, D. Ding and H. Li, The Anisotropic Corrosion Behaviour of Wire Arc Additive Manufactured Ti- 6Al-4V alloy in 3.5 % NaCl solution, Corros. Sci., 2018, 137, p 176–183. https://doi.org/10.1016/j.corsci.2018.03.047

    Article  CAS  Google Scholar 

  82. B. Wu, Z. Pan, D. Ding, D. Cuiuri, H. Li and Z. Fei, The Effects of Forced Interpass Cooling on the Material Properties of Wire Arc Additively Manufactured Ti6Al4V Alloy, J. Mater. Process. Technol., 2018, 258, p 97–105. https://doi.org/10.1016/j.jmatprotec.2018.03.024

    Article  CAS  Google Scholar 

  83. W. Wu, J. Xue, Z. Zhang and P. Yao, Comparative Study of 316L Depositions by Two Welding Current Processes, Mater. Manuf. Process., 2019, 34, p 1502–1508. https://doi.org/10.1080/10426914.2019.1643473

    Article  CAS  Google Scholar 

  84. Q. Wu, J. Lu, C. Liu, X. Shi, Q. Ma, S. Tang et al., Obtaining Uniform Deposition with Variable Wire Feeding Direction During Wire-Feed Additive Manufacturing, Mater. Manuf. Process., 2017, 32, p 1881–1886. https://doi.org/10.1080/10426914.2017.1364860

    Article  CAS  Google Scholar 

  85. M. Bambach, I. Sizova, B. Sydow, S. Hemes and F. Meiners, Hybrid Manufacturing of Components from Ti-6Al-4V by Metal Forming and Wire-Arc Additive Manufacturing, J. Mater. Process. Technol., 2020, 282, p 116689. https://doi.org/10.1016/j.jmatprotec.2020.116689

    Article  CAS  Google Scholar 

  86. L. Wang, Y. Suo, Z. Liang, D. Wang and Q. Wang, Effect of Titanium Powder on Microstructure and Mechanical Properties of Wire + Arc Additively Manufactured Al-Mg Alloy, Mater. Lett., 2019, 241, p 231–234. https://doi.org/10.1016/j.matlet.2019.01.117

    Article  CAS  Google Scholar 

  87. G. Campatelli, F. Montevecchi, G. Venturini, G. Ingarao and P.C. Priarone, Integrated WAAM-Subtractive Versus Pure Subtractive Manufacturing Approaches: An Energy Efficiency Comparison, Int. J. Precis. Eng. Manuf. Green Technol., 2020 https://doi.org/10.1007/s40684-019-00071-y

    Article  Google Scholar 

  88. B. Baufeld, O. Van der Biest and R. Gault, Additive Manufacturing of Ti-6Al-4V Components by Shaped Metal Deposition: Microstructure and Mechanical Properties, Mater. Des., 2010, 31, p S106–S111. https://doi.org/10.1016/j.matdes.2009.11.032

    Article  CAS  Google Scholar 

  89. B. Baufeld, E. Brandl and O. Van Der Biest, Wire Based Additive Layer Manufacturing: Comparison of Microstructure and Mechanical Properties of Ti-6Al-4V Components Fabricated by Laser-Beam Deposition and Shaped Metal Deposition, J. Mater. Process. Technol., 2011, 211, p 1146–1158. https://doi.org/10.1016/j.jmatprotec.2011.01.018

    Article  CAS  Google Scholar 

  90. F. Wang, S. Williams, P. Colegrove and A.A. Antonysamy, Microstructure and Mechanical Properties of Wire and Arc Additive Manufactured Ti-6Al-4V, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2013, 44, p 968–977. https://doi.org/10.1007/s11661-012-1444-6

    Article  CAS  Google Scholar 

  91. E. Brandl, B. Baufeld, C. Leyens and R. Gault, Additive Manufactured Ti-6A1-4V Using Welding Wire: Comparison of Laser and Arc Beam Deposition and Evaluation with Respect to Aerospace Material Specifications, Phys. Procedia, 2010, 5, p 595–606. https://doi.org/10.1016/j.phpro.2010.08.087

    Article  CAS  Google Scholar 

  92. J. Lin, Y. Lv, Y. Liu, Z. Sun, K. Wang, Z. Li et al., Microstructural Evolution and Mechanical Property of Ti-6Al-4V Wall Deposited by Continuous Plasma Arc Additive Manufacturing Without Post Heat Treatment, J. Mech. Behav. Biomed. Mater., 2017, 69, p 19–29. https://doi.org/10.1016/j.jmbbm.2016.12.015

    Article  CAS  Google Scholar 

  93. J.J. Lin, Y.H. Lv, Y.X. Liu, B.S. Xu, Z. Sun, Z.G. Li et al., Microstructural Evolution and Mechanical Properties of Ti-6Al-4V Wall Deposited by Pulsed Plasma Arc Additive Manufacturing, Mater. Des., 2016, 102, p 30–40. https://doi.org/10.1016/j.matdes.2016.04.018

    Article  CAS  Google Scholar 

  94. H. Attar, M.J. Bermingham, S. Ehtemam-Haghighi, A. Dehghan-Manshadi, D. Kent and M.S. Dargusch, Evaluation of the Mechanical and Wear Properties of Titanium Produced by Three Different Additive Manufacturing Methods for Biomedical Application, Mater Sci Eng A, 2019, 760, p 339–345. https://doi.org/10.1016/j.msea.2019.06.024

    Article  CAS  Google Scholar 

  95. L. Xue, J. Xiao, Z. Nie, F. Hao, R. Chen, C. Liu et al., Dynamic Response of Ti-6.5Al–1Mo–1V–2Zr-0.1B Alloy Fabricated by Wire Arc Additive Manufacturing, Mater. Sci. Eng. A, 2020, 800, p 140310. https://doi.org/10.1016/j.msea.2020.140310

    Article  CAS  Google Scholar 

  96. B. Wu, Z. Pan, G. Chen, D. Ding and L. Yuan, Mitigation of Thermal Distortion in Wire Arc Additively Manufactured Ti6Al4V Part Using Active Interpass Cooling, Sci. Technol. Weld. Join., 2019, 0, p 1–11. https://doi.org/10.1080/13621718.2019.1580439

    Article  CAS  Google Scholar 

  97. M.J. Bermingham, J. Thomson-Larkins, D.H. St John and M.S. Dargusch, Sensitivity of Ti-6Al-4V Components to Oxidation During Out of Chamber Wire + Arc Additive Manufacturing, J. Mater. Process. Technol., 2018, 258, p 29–37. https://doi.org/10.1016/j.jmatprotec.2018.03.014

    Article  CAS  Google Scholar 

  98. T.B. Kim, S. Yue, Z. Zhang, E. Jones, J.R. Jones and P.D. Lee, Additive manufactured Porous Titanium Structures: Through-Process Quantification Of Pore and Strut Networks, J. Mater. Process. Technol., 2014, 214, p 2706–2715. https://doi.org/10.1016/j.jmatprotec.2014.05.006

    Article  CAS  Google Scholar 

  99. S. Tamilselvi and N. Rajendran, Electrochemical Studies on the Stability and Corrosion Resistance of Ti-5Al-2Nb-1Ta Alloy for Biomedical Applications, Trends Biomater. Artif. Organs., 2006, 20, p 49–52.

    Google Scholar 

  100. O.K. Varghese, D. Gong, M. Paulose, C.A. Grimes and E.C. Dickey, Crystallization and High-Temperature Structural Stability of Titanium Oxide Nanotube Arrays, J. Mater. Res., 2003, 18, p 156–165. https://doi.org/10.1557/JMR.2003.0022

    Article  CAS  Google Scholar 

  101. J. Gu, J. Ding, S.W. Williams, H. Gu, J. Bai, Y. Zhai et al., The Strengthening Effect of Inter-Layer Cold Working and Post-Deposition Heat Treatment on the Additively Manufactured Al-6.3Cu Alloy, Mater. Sci. Eng. A, 2016, 651, p 18–26. https://doi.org/10.1016/j.msea.2015.10.101

    Article  CAS  Google Scholar 

  102. A.K. Lakshminarayanan, V. Balasubramanian and K. Elangovan, Effect of Welding Processes on Tensile Properties of AA6061 Aluminium Alloy Joints, Int. J. Adv. Manuf. Technol., 2009, 40, p 286–296. https://doi.org/10.1007/s00170-007-1325-0

    Article  Google Scholar 

  103. Z. Qi, B. Qi, B. Cong, H. Sun, G. Zhao and J. Ding, Microstructure and Mechanical Properties of Wire + Arc Additively Manufactured 2024 Aluminum Alloy Components: As-deposited and Post Heat-Treated, J. Manuf. Process., 2019, 40, p 27–36. https://doi.org/10.1016/j.jmapro.2019.03.003

    Article  Google Scholar 

  104. J. Gu, M. Gao, S. Yang, J. Bai, J. Ding and X. Fang, Pore Formation and Evolution in Wire + Arc Additively Manufactured 2319 Al Alloy, Addit. Manuf., 2019, 30, p 100900. https://doi.org/10.1016/j.addma.2019.100900

    Article  CAS  Google Scholar 

  105. A.G. Ortega, L. Corona Galvan, M. Salem, K. Moussaoui, S. Segonds, S. Rouquette et al., Characterisation of 4043 Aluminium Alloy Deposits Obtained by Wire and Arc Additive Manufacturing Using a Cold Metal Transfer Process, Sci. Technol. Weld. Join., 2019, 24, p 538–547. https://doi.org/10.1080/13621718.2018.1564986

    Article  CAS  Google Scholar 

  106. J. Gu, X. Wang, J. Bai, J. Ding, S. Williams, Y. Zhai et al., Deformation microstructures and strengthening mechanisms for the wire+arc additively manufactured Al-Mg45Mn alloy with inter-layer rolling, Mater Sci Eng A, 2018, 712, p 292–301. https://doi.org/10.1016/j.msea.2017.11.113

    Article  CAS  Google Scholar 

  107. L.E. Murr, S.M. Gaytan, A. Ceylan, E. Martinez, J.L. Martinez, D.H. Hernandez et al., Characterization of Titanium Aluminide Alloy Components Fabricated by Additive Manufacturing Using Electron Beam Melting, Acta Mater., 2010, 58, p 1887–1894. https://doi.org/10.1016/j.actamat.2009.11.032

    Article  CAS  Google Scholar 

  108. D.T. Sarathchandra, M.J. Davidson and G. Visvanathan, Parameters Effect on SS304 Beads Deposited by Wire Arc Additive Manufacturing, Mater. Manuf. Process., 2020, 00, p 1–7. https://doi.org/10.1080/10426914.2020.1743852

    Article  CAS  Google Scholar 

  109. W. Aiyiti, W. Zhao, B. Lu and Y. Tang, Investigation of the Overlapping Parameters of MPAW-Based Rapid Prototyping, Rapid. Prototyp. J., 2006, 12, p 165–172. https://doi.org/10.1108/13552540610670744

    Article  Google Scholar 

  110. X. Xu, S. Ganguly, J. Ding, S. Guo, S. Williams and F. Martina, Microstructural Evolution and Mechanical Properties of Maraging Steel Produced by Wire + Arc Additive Manufacture Process, Mater. Charact., 2018, 143, p 152–162. https://doi.org/10.1016/j.matchar.2017.12.002

    Article  CAS  Google Scholar 

  111. A. Caballero, J. Ding, S. Ganguly and S. Williams, Wire + Arc Additive Manufacture of 17–4 PH Stainless Steel: Effect of Different Processing Conditions on Microstructure, Hardness, and Tensile Strength, J. Mater. Process. Technol., 2019, 268, p 54–62. https://doi.org/10.1016/j.jmatprotec.2019.01.007

    Article  CAS  Google Scholar 

  112. V. Laghi, M. Palermo, L. Tonelli, G. Gasparini, L. Ceschini and T. Trombetti, Tensile Properties and Microstructural Features of 304L Austenitic Stainless Steel Produced by Wire-and-Arc Additive Manufacturing, Int. J. Adv. Manuf. Technol., 2020, 106, p 3693–3705. https://doi.org/10.1007/s00170-019-04868-8

    Article  Google Scholar 

  113. A. Karpagaraj, S. Baskaran, T. Arunnellaiappan and N.R. Kumar, A Review on the Suitability of Wire Arc Additive Manufacturing (WAAM) for Stainless Steel 316, AIP Conf. Proc., 2020 https://doi.org/10.1063/5.0004148

    Article  Google Scholar 

  114. M. Ghaffari, A. Vahedi Nemani and A. Nasiri, Interfacial Bonding Between a Wire Arc Additive Manufactured 420 Martensitic Stainless Steel Part and its Wrought Base Plate, Mater. Chem. Phys., 2020, 251, p 123199. https://doi.org/10.1016/j.matchemphys.2020.123199

    Article  CAS  Google Scholar 

  115. G. Bissacco, H.N. Hansen and L. De Chiffre, Micromilling of Hardened Tool Steel for Mould Making Applications, J. Mater. Process. Technol., 2005, 167, p 201–207. https://doi.org/10.1016/j.jmatprotec.2005.05.029

    Article  CAS  Google Scholar 

  116. L. Yan, Wire and Arc Additive Manufacture (WAAM) Reusable Tooling Investigation, Sch. Appl. Sci. MRes. Weld. Eng., 2013 https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  117. J.F. Wang, Q.J. Sun, H. Wang, J.P. Liu and J.C. Feng, Effect of Location on Microstructure and Mechanical Properties of Additive Layer Manufactured Inconel 625 Using Gas Tungsten Arc Welding, Mater. Sci. Eng. A, 2016, 676, p 395–405. https://doi.org/10.1016/j.msea.2016.09.015

    Article  CAS  Google Scholar 

  118. F.J. Xu, Y.H. Lv, B.S. Xu, Y.X. Liu, F.Y. Shu and P. He, Effect of Deposition Strategy on the Microstructure and Mechanical Properties of Inconel 625 Superalloy Fabricated by Pulsed Plasma Arc Deposition, Mater. Des., 2013, 45, p 446–455. https://doi.org/10.1016/j.matdes.2012.07.013

    Article  CAS  Google Scholar 

  119. C.E. Seow, H.E. Coules, G. Wu, R.H.U. Khan, X. Xu and S. Williams, Wire + Arc Additively Manufactured Inconel 718: Effect of Post-Deposition Heat Treatments on Microstructure and Tensile Properties, Mater. Des., 2019, 183, p 108157. https://doi.org/10.1016/j.matdes.2019.108157

    Article  CAS  Google Scholar 

  120. A.N.M. Tanvir, M.R.U. Ahsan, G. Seo, J. Kim, C. Ji, B. Bates et al., Heat Treatment Effects on Inconel 625 Components Fabricated by Wire + Arc Additively Manufacturing (WAAM)—part 2: Mechanical Properties, Int. J. Adv. Manuf. Technol., 2020, 110, p 1709–1721. https://doi.org/10.1007/s00170-020-05980-w

    Article  Google Scholar 

  121. A. Uriondo, M. Esperon-Miguez and S. Perinpanayagam, The Present and Future of Additive Manufacturing in the Aerospace Sector: A Review of Important Aspects, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., 2015, 229, p 2132–2147. https://doi.org/10.1177/0954410014568797

    Article  CAS  Google Scholar 

  122. G. Lu and G. Zangari, Corrosion Resistance of Ternary Ni-P Based Alloys in Sulfuric Acid Solutions, Electrochim. Acta, 2002, 47, p 2969–2979. https://doi.org/10.1016/S0013-4686(02)00198-6

    Article  CAS  Google Scholar 

  123. B.P. Bewlay, M.R. Jackson, P.R. Subramanian and J.J. Lewandowski, Very high-Temperature Nb-Silicide-Based Composites, Proc. Int. Symp. Niobium High Temp. Appl., 2004, 34, p 51–61.

    Google Scholar 

  124. G. Marinelli, F. Martina, H. Lewtas, D. Hancock, S. Ganguly and S. Williams, Functionally Graded Structures of Refractory Metals by Wire Arc Additive Manufacturing, Sci. Technol. Weld. Join., 2019, 24, p 495–503. https://doi.org/10.1080/13621718.2019.1586162

    Article  CAS  Google Scholar 

  125. L. Liu, Z. Zhuang, F. Liu and M. Zhu, Additive Manufacturing of Steel-Bronze Bimetal by Shaped Metal Deposition: Interface Characteristics and Tensile Properties, Int. J. Adv. Manuf. Technol., 2013, 69, p 2131–2137. https://doi.org/10.1007/s00170-013-5191-7

    Article  Google Scholar 

  126. C. Dharmendra, B.S. Amirkhiz, A. Lloyd, G.D.J. Ram and M. Mohammadi, Wire-Arc Additive Manufactured Nickel Aluminum Bronze with Enhanced Mechanical Properties Using Heat Treatments Cycles, Addit. Manuf., 2020, 36, p 101510. https://doi.org/10.1016/j.addma.2020.101510

    Article  CAS  Google Scholar 

  127. Z. Zeng, B.Q. Cong, J.P. Oliveira, W.C. Ke, N. Schell, B. Peng et al., Wire and Arc Additive Manufacturing of a Ni-rich NiTi Shape Memory Alloy: Microstructure and Mechanical Properties, Addit. Manuf., 2020 https://doi.org/10.1016/j.addma.2020.101051

    Article  Google Scholar 

  128. M. Cheepu, C.I. Lee and S.M. Cho, Microstructural Characteristics of Wire Arc Additive Manufacturing with Inconel 625 by Super-TIG Welding, Trans. Indian Inst. Met., 2020, 73, p 1475–1479. https://doi.org/10.1007/s12666-020-01915-x

    Article  CAS  Google Scholar 

  129. M. Bauccio, ASM Metals Reference Book, ASM International, Ohio, 1993.

    Google Scholar 

  130. G. Ravi, N. Murugan and R. Arulmani, Microstructure and Mechanical Properties of Inconel-625 Slab Component Fabricated by Wire Arc Additive Manufacturing, Mater. Sci. Technol. (United Kingdom), 2020, 36, p 1785–1795. https://doi.org/10.1080/02670836.2020.1836737

    Article  CAS  Google Scholar 

  131. B. Baufeld, Mechanical Properties of INCONEL 718 Parts Manufactured by Shaped Metal Deposition (SMD), J. Mater. Eng. Perform., 2012, 21, p 1416–1421. https://doi.org/10.1007/s11665-011-0009-y

    Article  CAS  Google Scholar 

  132. B.A. Szost, S. Terzi, F. Martina, D. Boisselier, A. Prytuliak, T. Pirling et al., A Comparative Study of Additive Manufacturing Techniques: Residual Stress and Microstructural Analysis of CLAD and WAAM Printed Ti-6Al-4V Components, Mater. Des., 2016, 89, p 559–567. https://doi.org/10.1016/j.matdes.2015.09.115

    Article  CAS  Google Scholar 

  133. C. Qiu, G.A. Ravi, C. Dance, A. Ranson, S. Dilworth and M.M. Attallah, Fabrication of Large Ti-6Al-4V Structures by Direct Laser Deposition, J. Alloys. Compd., 2015, 629, p 351–361. https://doi.org/10.1016/j.jallcom.2014.12.234

    Article  CAS  Google Scholar 

  134. F. Wang, S. Williams and M. Rush, Morphology Investigation on Direct Current Pulsed Gas Tungsten Arc Welded Additive Layer Manufactured Ti6Al4V Alloy, Int. J. Adv. Manuf. Technol., 2011, 57, p 597–603. https://doi.org/10.1007/s00170-011-3299-1

    Article  Google Scholar 

  135. B.E. Carroll, T.A. Palmer and A.M. Beese, Anisotropic Tensile Behavior of Ti-6Al-4V Components Fabricated with Directed Energy Deposition Additive Manufacturing, Acta Mater., 2015, 87, p 309–320. https://doi.org/10.1016/j.actamat.2014.12.054

    Article  CAS  Google Scholar 

  136. Y. Xie, M. Gao, F. Wang, C. Zhang, K. Hao, H. Wang et al., Anisotropy of Fatigue Crack Growth in Wire Arc Additive Manufactured Ti-6Al-4V, Mater. Sci. Eng. A, 2018, 709, p 265–269. https://doi.org/10.1016/j.msea.2017.10.064

    Article  CAS  Google Scholar 

  137. I. Sizova, M. Hirtler, M. Günther and M. Bambach, Wire-Arc Additive Manufacturing of Pre-forms for Forging of a Ti-6Al-4V Turbine Blade, AIP Conf. Proc., 2019 https://doi.org/10.1063/1.5112693

    Article  Google Scholar 

  138. T. Mishurova, B. Sydow, T. Thiede, I. Sizova, A. Ulbricht, M. Bambach et al., Residual Stress and Microstructure of a Ti-6Al-4V Wire Arc Additive Manufacturing Hybrid Demonstrator, Metals (Basel), 2020, 10, p 1–15. https://doi.org/10.3390/met10060701

    Article  Google Scholar 

  139. B. Wu, Z. Pan, D. Ding, D. Cuiuri and H. Li, Effects of Heat Accumulation on Microstructure and Mechanical Properties of Ti6Al4V Alloy Deposited by Wire Arc Additive Manufacturing, Addit. Manuf., 2018, 23, p 151–160. https://doi.org/10.1016/j.addma.2018.08.004

    Article  CAS  Google Scholar 

  140. D. Ding, B. Wu, Z. Pan, Z. Qiu and H. Li, Wire Arc Additive Manufacturing of Ti6AL4V Using Active Interpass Cooling, Mater. Manuf. Process., 2020, 00, p 1–7. https://doi.org/10.1080/10426914.2020.1732414

    Article  CAS  Google Scholar 

  141. F. Martina, S.W. Williams, P. Colegrove, Improved Microstructure and Increased Mechanical Properties of Additive Manufacture Produced TI-6AL-4V by Interpass Cold Rolling. In: 24th Int SFF Symp—An Addit Manuf Conf SFF 2013:490–6, (2013)

  142. J. Gu, J. Ding, S.W. Williams, H. Gu, P. Ma and Y. Zhai, The Effect of Inter-Layer Cold Working and Post-Deposition Heat Treatment on Porosity in Additively Manufactured Aluminum Alloys, J. Mater. Process. Technol., 2016, 230, p 26–34. https://doi.org/10.1016/j.jmatprotec.2015.11.006

    Article  CAS  Google Scholar 

  143. M. Kobayashi, Y. Dorce, H. Toda and H. Horikawa, Effect of Local Volume Fraction of Microporosity on Tensile Properties in Al-Si-Mg Cast Alloy, Mater. Sci. Technol., 2010, 26, p 962–967. https://doi.org/10.1179/174328409X441283

    Article  CAS  Google Scholar 

  144. P.N. Anyalebechi, Hydrogen-Induced Gas Porosity Formation in Al-4.5 wt% Cu-1.4 wt% Mg Alloy, J. Mater. Sci., 2013, 48, p 5342–5353. https://doi.org/10.1007/s10853-013-7329-2

    Article  CAS  Google Scholar 

  145. M. Köhler, S. Fiebig, J. Hensel and K. Dilger, Wire and Arc Additive Manufacturing of Aluminum Components, Metals (Basel), 2019, 9, p 1–9. https://doi.org/10.3390/met9050608

    Article  CAS  Google Scholar 

  146. C. Li, H. Gu, W. Wang, S. Wang, L. Ren, Z. Wang et al., Effect of Heat Input on Formability, Microstructure, and Properties of Al-7Si-06Mg Alloys Deposited by CMT-WAAM Process, Appl. Sci., 2020 https://doi.org/10.3390/app10010070

    Article  Google Scholar 

  147. X. Fang, L. Zhang, G. Chen, X. Dang, K. Huang, L. Wang et al., Correlations Between Microstructure Characteristics and Mechanical Properties in 5183 Aluminium Alloy Fabricated by Wire-Arc Additive Manufacturing with Different Arc Modes, Materials (Basel), 2018 https://doi.org/10.3390/ma11112075

    Article  Google Scholar 

  148. S. Li, L.J. Zhang, J. Ning, X. Wang, G.F. Zhang, J.X. Zhang et al., Comparative Study on the Microstructures and Properties of Wire+Arc Additively Manufactured 5356 Aluminium Alloy with Argon and Nitrogen as the Shielding Gas, Addit. Manuf., 2020, 34, p 101206. https://doi.org/10.1016/j.addma.2020.101206

    Article  CAS  Google Scholar 

  149. C.V. Haden, G. Zeng, F.M. Carter, C. Ruhl, B.A. Krick and D.G. Harlow, Wire and Arc Additive Manufactured Steel: Tensile and Wear Properties, Addit. Manuf., 2017, 16, p 115–123. https://doi.org/10.1016/j.addma.2017.05.010

    Article  CAS  Google Scholar 

  150. L. Wang, J. Xue and Q. Wang, Correlation Between Arc Mode, Microstructure, and Mechanical Properties During Wire Arc Additive Manufacturing of 316L Stainless Steel, Mater. Sci. Eng. A, 2019, 751, p 183–190. https://doi.org/10.1016/j.msea.2019.02.078

    Article  CAS  Google Scholar 

  151. V.T. Le and D.S. Mai, Microstructural and Mechanical Characteristics of 308L Stainless Steel Manufactured by Gas Metal Arc Welding-Based Additive Manufacturing, Mater. Lett., 2020 https://doi.org/10.1016/j.matlet.2020.127791

    Article  Google Scholar 

  152. M. Eriksson, M. Lervåg, C. Sørensen, A. Robertstad, B.M. Brønstad, B. Nyhus et al., Additive Manufacture of Superduplex Stainless Steel Using WAAM, MATEC Web. Conf., 2018, 188, p 1–8. https://doi.org/10.1051/matecconf/201818803014

    Article  CAS  Google Scholar 

  153. J.S. Panchagnula and S. Simhambhatla, Manufacture of Complex Thin-Walled Metallic Objects Using Weld-Deposition Based Additive Manufacturing, Robot. Comput. Integr. Manuf., 2018, 49, p 194–203. https://doi.org/10.1016/j.rcim.2017.06.003

    Article  Google Scholar 

  154. J. Singh, K.S. Arora and D.K. Shukla, Dissimilar MIG-CMT Weld-Brazing of Aluminium to Steel: A Review, J. Alloys Compd., 2019, 783, p 753–764. https://doi.org/10.1016/j.jallcom.2018.12.336

    Article  CAS  Google Scholar 

  155. T. Soysal, S. Kou, D. Tat and T. Pasang, Macrosegregation in Dissimilar-Metal Fusion Welding, Acta Mater., 2016, 110, p 149–160. https://doi.org/10.1016/j.actamat.2016.03.004

    Article  CAS  Google Scholar 

  156. W. Jin, C. Zhang, S. Jin, et al., Wire Arc Additive Manufacturing of Stainless Steels: A Review, Appl. Sci., 2020, 10, p 1563. https://doi.org/10.3390/app10051563

    Article  CAS  Google Scholar 

  157. B. Onuike and A. Bandyopadhyay, Additive Manufacturing of INCONEL 718—Ti6Al4V Bimetallic Structures, Addit. Manuf., 2018, 22, p 844–851. https://doi.org/10.1016/j.addma.2018.06.025

    Article  CAS  Google Scholar 

  158. B. Xiong, C. Cai, H. Wan and B. Lu, Fabrication Of High Chromium Cast Iron and Medium Carbon Steel Bimetal by Liquid-Solid Casting In Electromagnetic Induction Field, Mater. Des., 2011, 32, p 2978–2982. https://doi.org/10.1016/j.matdes.2011.01.006

    Article  CAS  Google Scholar 

  159. H.D. Manesh and A.K. Taheri, An Investigation of Deformation Behavior and Bonding Strength of Bimetal Strip During Rolling, Mech. Mater., 2005, 37, p 531–542. https://doi.org/10.1016/j.mechmat.2004.04.004

    Article  Google Scholar 

  160. O. Yilmaz and H. Çelik, Electrical and Thermal Properties of the Interface at Diffusion-Bonded and Soldered 304 Stainless Steel and Copper Bimetal, J. Mater. Process. Technol., 2003, 141, p 67–76. https://doi.org/10.1016/S0924-0136(03)00029-3

    Article  CAS  Google Scholar 

  161. A. Khosravifard and R. Ebrahimi, Investigation of Parameters Affecting Interface Strength in Al/Cu Clad Bimetal Rod Extrusion Process, Mater. Des., 2010, 31, p 493–499. https://doi.org/10.1016/j.matdes.2009.06.026

    Article  CAS  Google Scholar 

  162. B.V. Krishna, P. Venugopal and K.P. Rao, Co-extrusion of Dissimilar Sintered P/M preforms—An Explored Route to Produce Bimetallic Tubes, Mater. Sci. Eng. A, 2005, 407, p 77–83. https://doi.org/10.1016/j.msea.2005.06.025

    Article  CAS  Google Scholar 

  163. A.M.R. Ul, T.A.N. Mohammad, R. Taylor, E. Ahmed, O. Min-Suk and K.D. Bong, Fabrication of Bimetallic Additively Manufactured Structure (BAMS) of Low Carbon Steel and 316L Austenitic Stainless Steel with Wire + Arc Additive Manufacturing, Rapid. Prototyp. J., 2019, 26, p 519–530. https://doi.org/10.1108/RPJ-09-2018-0235

    Article  Google Scholar 

  164. R.U. Ahsan, X. Fan, G. Seo, C. Ji, M. Noakes, A. Nycz et al., Microstructures and Mechanical Behavior of the Bimetallic Additively-Manufactured Structure (BAMS) of Austenitic Stainless Steel and Inconel 625, J. Mater. Sci. Technol., 2021, 74, p 176–188. https://doi.org/10.1016/j.jmst.2020.10.001

    Article  CAS  Google Scholar 

  165. C. Shen, Z. Pan, Y. Ma, D. Cuiuri and H. Li, Fabrication of Iron-rich Fe-Al Intermetallics Using the Wire-Arc Additive Manufacturing Process, Addit. Manuf., 2015, 7, p 20–26. https://doi.org/10.1016/j.addma.2015.06.001

    Article  CAS  Google Scholar 

  166. C.G. McKamey, A Review of Recent Developments in Fe3AL-Based Alloys, Comment Rev., 1991, 2, p 285–297. https://doi.org/10.1111/j.1469-185X.1927.tb01400.x

    Article  Google Scholar 

  167. B.L. Mordike and T. Ebert, Magnesium Properties—Applications—Potential, Mater. Sci. Eng. A, 2001, 302, p 37–45. https://doi.org/10.1016/S0921-5093(00)01351-4

    Article  Google Scholar 

  168. J. Zhang, C. Xu, Y. Jing, S. Lv, S. Liu, D. Fang et al., New Horizon for High Performance Mg-based Biomaterial with Uniform Degradation Behavior: Formation of Stacking Faults, Sci. Rep., 2015, 5, p 1–16. https://doi.org/10.1038/srep13933

    Article  Google Scholar 

  169. F. Chai, D. Zhang and Y. Li, Effect of Thermal History on Microstructures and Mechanical Properties of AZ31 Magnesium Alloy Prepared by Friction Stir Processing, Materials (Basel), 2014, 7, p 1573–1589. https://doi.org/10.3390/ma7031573

    Article  CAS  Google Scholar 

  170. J. Guo, Y. Zhou, C. Liu, Q. Wu, X. Chen and J. Lu, Wire Arc Additive Manufacturing of AZ31 Magnesium Alloy: Grain Refinement by Adjusting Pulse Frequency, Materials (Basel), 2016 https://doi.org/10.3390/ma9100823

    Article  Google Scholar 

  171. D. Gruyter, Additive and Subtractive Manufacturing. Additive and Subtractive Manufacturing (2019). https://doi.org/10.1515/9783110549775

  172. D.A. Martinez Holguin, S. Han and N.P. Kim, Magnesium Alloy 3D Printing by Wire and Arc Additive Manufacturing (WAAM), MRS Adv., 2018, 3, p 2959–2964. https://doi.org/10.1557/adv.2018.553

    Article  CAS  Google Scholar 

  173. M.P. Mughal, H. Fawad, R.A. Mufti and M. Siddique, Deformation Modelling in Layered Manufacturing of Metallic Parts Using Gas Metal Arc Welding: Effect of Process Parameters, Model Simul. Mater. Sci. Eng., 2005, 13, p 1187–1204. https://doi.org/10.1088/0965-0393/13/7/013

    Article  Google Scholar 

  174. E. Aldalur, F. Veiga, A. Suárez, J. Bilbao and A. Lamikiz, High Deposition Wire Arc Additive Manufacturing of Mild Steel: Strategies and Heat Input Effect on Microstructure and Mechanical Properties, J. Manuf. Process., 2020, 58, p 615–626. https://doi.org/10.1016/j.jmapro.2020.08.060

    Article  Google Scholar 

  175. K.S. Derekar, A. Addison, S.S. Joshi, X. Zhang, J. Lawrence, L. Xu et al., Effect of Pulsed Metal Inert Gas (pulsed-MIG) and Cold Metal Transfer (CMT) Techniques on Hydrogen Dissolution in Wire Arc Additive Manufacturing (WAAM) of Aluminium, Int. J. Adv. Manuf. Technol., 2020, 107, p 311–331. https://doi.org/10.1007/s00170-020-04946-2

    Article  Google Scholar 

  176. X. Zhang, K. Wang, Q. Zhou, J. Ding, S. Ganguly, M. Grasso et al., Microstructure and Mechanical Properties of TOP-TIG-wire and Arc Additive Manufactured Super Duplex Stainless Steel (ER2594), Mater. Sci. Eng. A, 2019, 762, p 138097. https://doi.org/10.1016/j.msea.2019.138097

    Article  CAS  Google Scholar 

  177. G. Liu and J. Xiong, External Filler Wire Based GMA-AM Process of 2219 Aluminum Alloy, Mater. Manuf. Process., 2020, 00, p 1–10. https://doi.org/10.1080/10426914.2020.1779936

    Article  CAS  Google Scholar 

  178. K.H. Li, J.S. Chen and Y.M. Zhang, Double-Electrode GMAW Process and Control A Novel Welding Process Adds a GTAW Torch to a Conventional, Weld J, 2007, 86, p 231s–237s.

    Google Scholar 

  179. D. Yang, C. He and G. Zhang, Forming Characteristics of Thin-Wall Steel Parts by Double Electrode GMAW Based Additive Manufacturing, J. Mater. Process. Technol., 2016, 227, p 153–160. https://doi.org/10.1016/j.jmatprotec.2015.08.021

    Article  CAS  Google Scholar 

  180. D. Yang, G. Wang and G. Zhang, Thermal Analysis for Single-Pass Multi-Layer GMAW Based Additive Manufacturing Using Infrared Thermography, J Mater Process Technol, 2017, 244, p 215–224. https://doi.org/10.1016/j.jmatprotec.2017.01.024

    Article  Google Scholar 

  181. F. Montevecchi, G. Venturini, N. Grossi, A. Scippa and G. Campatelli, Idle Time Selection for Wire-Arc Additive Manufacturing: A Finite Element-Based Technique, Addit. Manuf., 2018, 21, p 479–486. https://doi.org/10.1016/j.addma.2018.01.007

    Article  Google Scholar 

  182. H. Geng, J. Li, J. Xiong and X. Lin, Optimisation of Interpass Temperature and Heat Input for Wire and Arc Additive Manufacturing 5A06 Aluminium Alloy, Sci. Technol. Weld. Join., 2017, 22, p 472–483. https://doi.org/10.1080/13621718.2016.1259031

    Article  CAS  Google Scholar 

  183. S. Ríos, P.A. Colegrove, F. Martina and S.W. Williams, Analytical Process Model for Wire + Arc Additive Manufacturing, Addit. Manuf., 2018, 21, p 651–657. https://doi.org/10.1016/j.addma.2018.04.003

    Article  CAS  Google Scholar 

  184. Y. Lei, J. Xiong and R. Li, Effect of Inter Layer Idle Time on Thermal Behavior for Multi-Layer Single-Pass Thin-Walled Parts in GMAW-Based Additive Manufacturing, Int. J. Adv. Manuf. Technol., 2018, 96, p 1355–1365. https://doi.org/10.1007/s00170-018-1699-1

    Article  Google Scholar 

  185. F. Li, S. Chen, J. Shi, Y. Zhao and H. Tian, Thermoelectric Cooling-Aided Bead Geometry Regulation in Wire and Arc-Based Additive Manufacturing of Thin-Walled Structures, Appl. Sci., 2018 https://doi.org/10.3390/app8020207

    Article  Google Scholar 

  186. F. Montevecchi, G. Venturini, N. Grossi, A. Scippa and G. Campatelli, Heat Accumulation Prevention in Wire-Arc-Additive-Manufacturing using Air Jet Impingement, Manuf. Lett., 2018, 17, p 14–18. https://doi.org/10.1016/j.mfglet.2018.06.004

    Article  Google Scholar 

  187. V. Manvatkar, A. De and T. Debroy, Heat Transfer and Material Flow During Laser Assisted Multi-Layer Additive Manufacturing, J. Appl. Phys., 2014 https://doi.org/10.1063/1.4896751

    Article  Google Scholar 

  188. L.J. da Silva, D.M. Souza, D.B. de Araújo, R.P. Reis and A. Scotti, Concept and Validation of an Active Cooling Technique to Mitigate Heat Accumulation in WAAM, Int. J. Adv. Manuf. Technol., 2020, 107, p 2513–2523. https://doi.org/10.1007/s00170-020-05201-4

    Article  Google Scholar 

  189. X. Xu, J. Ding, S. Ganguly, C. Diao and S. Williams, Preliminary Investigation of Building Strategies of Maraging Steel Bulk Material Using Wire + Arc Additive Manufacture, J. Mater. Eng. Perform., 2019, 28, p 594–600. https://doi.org/10.1007/s11665-018-3521-5

    Article  CAS  Google Scholar 

  190. J. Ding, P. Colegrove, J. Mehnen, S. Ganguly, P.M.S. Almeida, F. Wang et al., Thermo-Mechanical Analysis of Wire and Arc Additive Layer Manufacturing Process on Large Multi-Layer Parts, Comput. Mater. Sci., 2011, 50, p 3315–3322. https://doi.org/10.1016/j.commatsci.2011.06.023

    Article  CAS  Google Scholar 

  191. G. Vastola, G. Zhang, Q.X. Pei and Y.W. Zhang, Controlling of Residual Stress in Additive Manufacturing of Ti6Al4V by Finite Element Modeling, Addit. Manuf., 2016, 12, p 231–239. https://doi.org/10.1016/j.addma.2016.05.010

    Article  CAS  Google Scholar 

  192. J. Ding, P. Colegrove, J. Mehnen, S. Williams, F. Wang and P.S. Almeida, A Computationally Efficient Finite Element Model of Wire and Arc Additive Manufacture, Int. J. Adv. Manuf. Technol., 2014, 70, p 227–236. https://doi.org/10.1007/s00170-013-5261-x

    Article  Google Scholar 

  193. J.R. Hönnige, S. Williams, M.J. Roy, P. Colegrove and S. Ganguly, Residual Stress Characterization and Control in the Additive Manufacture of Large Scale Metal Structures, Residual Stress 2016, 2017, 2, p 455–460. https://doi.org/10.21741/9781945291173-77

    Article  CAS  Google Scholar 

  194. J.R. Hönnige, P.A. Colegrove, B. Ahmad, M.E. Fitzpatrick, S. Ganguly, T.L. Lee et al., Residual Stress and Texture Control in Ti-6Al-4V Wire + Arc Additively Manufactured Intersections by Stress Relief and Rolling, Mater. Des., 2018, 150, p 193–205. https://doi.org/10.1016/j.matdes.2018.03.065

    Article  CAS  Google Scholar 

  195. T. Mukherjee, W. Zhang and T. DebRoy, An Improved Prediction of Residual Stresses and Distortion in Additive Manufacturing, Comput. Mater. Sci., 2017, 126, p 360–372. https://doi.org/10.1016/j.commatsci.2016.10.003

    Article  CAS  Google Scholar 

  196. F. Martina, M.J. Roy, B.A. Szost, S. Terzi, P.A. Colegrove, S.W. Williams et al., Residual Stress of as-deposited and Rolled Wire+Arc Additive Manufacturing Ti–6Al–4V Components, Mater. Sci. Technol. (United Kingdom), 2016, 32, p 1439–1448. https://doi.org/10.1080/02670836.2016.1142704

    Article  CAS  Google Scholar 

  197. F. Martina, M. Roy, P. Colegrove, S.W. Williams, Residual Stress Reduction in High Pressure Interpass Rolled Wire+Arc Additive Manufacturing TI-6AL-4V Components. 25th Annu Int Solid Free Fabr Symp � An Addit Manuf Conf SFF (2014), 2014:89–94

  198. F. Li, S. Chen, J. Shi and Y. Zhao, In-process Control of Distortion in Wire and Arc Additive Manufacturing Based on a Flexible Multi-Point Support Fixture, Sci. Technol. Weld. Join., 2019, 24, p 36–42. https://doi.org/10.1080/13621718.2018.1476083

    Article  Google Scholar 

  199. J. Altenkirch, A. Steuwer, P.J. Withers, S.W. Williams, M. Poad and S.W. Wen, Residual Stress Engineering in Friction Stir Welds by Roller Tensioning, Sci. Technol. Weld. Join., 2009, 14, p 185–192. https://doi.org/10.1179/136217108X388624

    Article  CAS  Google Scholar 

  200. H. Coules, Characterising the Effects of High-Pressure Rolling on Residual Stress in Structural Steel Welds. https://doi.org/10.13140/RG.2.1.1094.3767 (2016)

  201. P. Dirisu, G. Supriyo, F. Martina, X. Xu and S. Williams, Wire Plus Arc Additive Manufactured Functional Steel Surfaces Enhanced by Rolling, Int. J. Fatigue, 2020, 130, p 105237. https://doi.org/10.1016/j.ijfatigue.2019.105237

    Article  CAS  Google Scholar 

  202. S. Zhang, Y. Zhang, M. Gao, F. Wang, Q. Li and X. Zeng, Effects of Milling Thickness on Wire Deposition Accuracy of Hybrid Additive/Subtractive Manufacturing, Sci. Technol. Weld. Join., 2019, 24, p 375–381. https://doi.org/10.1080/13621718.2019.1595925

    Article  CAS  Google Scholar 

  203. J. Xiong, Y. Li, R. Li and Z. Yin, Influences of Process Parameters on Surface Roughness Of Multi-Layer Single-Pass Thin-Walled Parts in GMAW-Based Additive Manufacturing, J. Mater. Process. Technol., 2018, 252, p 128–136. https://doi.org/10.1016/j.jmatprotec.2017.09.020

    Article  Google Scholar 

  204. Y. Yehorov, L.J. da Silva and A. Scotti, Balancing WAAM Production Costs and Wall Surface Quality Through Parameter Selection: A Case Study of an Al-Mg5 Alloy Multilayer-Non-Oscillated Single Pass Wall, J. Manuf. Mater. Process., 2019 https://doi.org/10.3390/jmmp3020032

    Article  Google Scholar 

  205. E.A. Alberti, B.M.P. Bueno and A.S.C.M. D’Oliveira, Additive Manufacturing Using Plasma Transferred Arc, Int. J. Adv. Manuf. Technol., 2016, 83, p 1861–1871. https://doi.org/10.1007/s00170-015-7697-7

    Article  Google Scholar 

  206. J. Xiong, Y. Lei and R. Li, Finite Element Analysis and Experimental Validation of Thermal Behavior for Thin-Walled Parts in GMAW-Based Additive Manufacturing with Various Substrate Preheating Temperatures, Appl. Therm. Eng., 2017, 126, p 43–52. https://doi.org/10.1016/j.applthermaleng.2017.07.168

    Article  Google Scholar 

  207. X. Xu, J. Ding, S. Ganguly, C. Diao and S. Williams, Oxide Accumulation Effects on Wire + Arc Layer-by-Layer Additive Manufacture Process, J. Mater. Process. Technol., 2018, 252, p 739–750. https://doi.org/10.1016/j.jmatprotec.2017.10.030

    Article  CAS  Google Scholar 

  208. M.J. Bermingham, D. Kent, H. Zhan, D.H. Stjohn and M.S. Dargusch, Controlling the Microstructure and Properties of Wire Arc Additive Manufactured Ti-6Al-4V with Trace Boron Additions, Acta Mater., 2015, 91, p 289–303. https://doi.org/10.1016/j.actamat.2015.03.035

    Article  CAS  Google Scholar 

  209. M.S. Joo, D.W. Suh and H.K.D.H. Bhadeshia, Mechanical Anisotropy in Steels for Pipelines, ISIJ Int., 2013, 53, p 1305–1314. https://doi.org/10.2355/isijinternational.53.1305

    Article  CAS  Google Scholar 

  210. Y. Yehorov, L.J. da Silva and A. Scotti, Exploring the Use of Switchback for Mitigating Homoepitaxial Unidirectional Grain Growth and Porosity in WAAM of Aluminium Alloys, Int. J. Adv. Manuf. Technol., 2019, 104, p 1581–1592. https://doi.org/10.1007/s00170-019-03959-w

    Article  Google Scholar 

  211. L.L. Parimi, G. Ravi, D. Clark and M.M. Attallah, Microstructural and Texture Development in Direct Laser Fabricated IN718, Mater. Charact., 2014, 89, p 102–111. https://doi.org/10.1016/j.matchar.2013.12.012

    Article  CAS  Google Scholar 

  212. G.P. Dinda, A.K. Dasgupta and J. Mazumder, Texture Control During Laser Deposition of Nickel-Based Superalloy, Scr. Mater., 2012, 67, p 503–506. https://doi.org/10.1016/j.scriptamat.2012.06.014

    Article  CAS  Google Scholar 

  213. V.R. Duarte, T.A. Rodrigues, N. Schell, R.M. Miranda, J.P. Oliveira and T.G. Santos, Hot Forging Wire and Arc Additive Manufacturing (HF-WAAM), Addit. Manuf., 2020, 35, p 101193. https://doi.org/10.1016/j.addma.2020.101193

    Article  CAS  Google Scholar 

  214. X. Xu, S. Ganguly, J. Ding, C.E. Seow and S. Williams, Enhancing Mechanical Properties of Wire + Arc Additively Manufactured INCONEL 718 Superalloy Through in-Process Thermomechanical Processing, Mater. Des., 2018, 160, p 1042–1051. https://doi.org/10.1016/j.matdes.2018.10.038

    Article  CAS  Google Scholar 

  215. A. Rajesh Kannan, N. Siva Shanmugam, V. Rajkumar and M. Vishnukumar, Insight into the Microstructural Features and Corrosion Properties of Wire Arc Additive Manufactured Super Duplex Stainless Steel (ER2594), Mater. Lett., 2020, 270, p 127680. https://doi.org/10.1016/j.matlet.2020.127680

    Article  CAS  Google Scholar 

  216. D.X. Wen, P. Long, J.J. Li, L. Huang and Z.Z. Zheng, Effects of Linear Heat Input on Microstructure and Corrosion Behavior of an Austenitic Stainless Steel Processed by Wire Arc Additive Manufacturing, Vacuum, 2020, 173, p 109131. https://doi.org/10.1016/j.vacuum.2019.109131

    Article  CAS  Google Scholar 

  217. J. Yang, H. Yang, H. Yu and Z. Wang, Corrosion Behavior of Additive Manufactured Ti-6Al-4V Alloy in NaCl Solution, Metall. Mater. Trans. A, 2017, 48, p 3583–3593. https://doi.org/10.1007/s11661-017-4087-9

    Article  CAS  Google Scholar 

  218. L.N. Zhang and O.A. Ojo, Corrosion Behavior of Wire Arc Additive Manufactured Inconel 718 Superalloy, J. Alloys Compd., 2020, 829, p 154455. https://doi.org/10.1016/j.jallcom.2020.154455

    Article  CAS  Google Scholar 

  219. L. Vázquez, N. Rodríguez, I. Rodríguez, E. Alberdi and P. Álvarez, Influence of Interpass Cooling Conditions on Microstructure and Tensile Properties of Ti-6Al-4V Parts Manufactured by WAAM, Weld. World, 2020, 64, p 1377–1388. https://doi.org/10.1007/s40194-020-00921-3

    Article  CAS  Google Scholar 

  220. B. Parvaresh, R. Salehan and R. Miresmaeili, Investigating Isotropy of Mechanical and Wear Properties in As-Deposited and Inter-Layer Cold Worked Specimens Manufactured by Wire Arc Additive Manufacturing, Met. Mater. Int., 2020 https://doi.org/10.1007/s12540-020-00793-8

    Article  Google Scholar 

  221. X. Fang, L. Zhang, G. Chen, K. Huang, F. Xue, L. Wang et al., Microstructure Evolution of Wire-Arc Additively Manufactured 2319 Aluminum Alloy with Interlayer Hammering, Mater. Sci. Eng. A, 2020 https://doi.org/10.1016/j.msea.2020.140168

    Article  Google Scholar 

  222. F. Li, S. Chen, J. Shi and H. Tian, Investigation on Surface Quality in a Hybrid Manufacturing System Combining Wire and Arc Additive Manufacturing and Machining. In: Chen S., Zhang Y., Feng Z. (eds) Transactions on Intelligent Welding Manufacturing. Transactions on Intelligent Welding Manufacturing. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7043-3_9

  223. M.R. Dunlavey, Efficient Polygon-Filling Algorithms for Raster Displays, ACM Trans. Graph, 1983, 2, p 264–273. https://doi.org/10.1145/245.248

    Article  Google Scholar 

  224. V.T. Rajan, V. Srinivasan and K.A. Tarabanis, The Optimal Zigzag Direction for Filling a Two-Dimensional Region, Rapid. Prototyp. J., 2001, 7, p 231–241. https://doi.org/10.1108/13552540110410431

    Article  Google Scholar 

  225. M. Magee and S. Seida, Path Planning with Offset Curves for Layered Fabrication Processes, J. Manuf. Syst., 1995, 14, p 1995.

    Google Scholar 

  226. H. Wang, P. Jang and J.A. Stori, A Metric-Based Approach to Two-Dimensional (2D) Tool-Path Optimization for High-Speed Machining, J. Manuf. Sci. Eng. Trans. ASME, 2005, 127, p 33–48. https://doi.org/10.1115/1.1830492

    Article  Google Scholar 

  227. F. Ren, Y. Sun and D. Guo, Combined Reparameterization-Based Spiral Toolpath Generation for Five-Axis Sculptured Surface Machining, Int. J. Adv. Manuf. Technol., 2009, 40, p 760–768. https://doi.org/10.1007/s00170-008-1385-9

    Article  Google Scholar 

  228. W.K. Chiu, Y.C. Yeung and K.M. Yu, Toolpath Generation for Layer Manufacturing of Fractal Objects, Rapid. Prototyp. J., 2006, 12, p 214–221. https://doi.org/10.1108/13552540610682723

    Article  Google Scholar 

  229. T. Wasser , A.D. Jayal, C. Pistor, Implementation and Evaluation of Novel Buildstyles in Fused Deposition Modeling (FDM). Solid Free Fabr Proceedings, August 1999 1999:95–102

  230. R. Dwivedi and R. Kovacevic, Automated Torch Path Planning Using Polygon Subdivision for Solid Freeform Fabrication Based on Welding, J. Manuf. Syst., 2004, 23, p 278–291. https://doi.org/10.1016/S0278-6125(04)80040-2

    Article  Google Scholar 

  231. G.Q. Jin, W.D. Li and L. Gao, An Adaptive Process Planning Approach of Rapid Prototyping and Manufacturing, Robot. Comput. Integr. Manuf., 2013, 29, p 23–38. https://doi.org/10.1016/j.rcim.2012.07.001

    Article  Google Scholar 

  232. D. Ding, Z. Pan, D. Cuiuri and H. Li, A Practical Path Planning Methodology for Wire and Arc Additive Manufacturing of Thin-Walled Structures, Robot. Comput. Integr. Manuf., 2015, 34, p 8–19. https://doi.org/10.1016/j.rcim.2015.01.003

    Article  Google Scholar 

  233. D. Ding, Z. Pan, D. Cuiuri, H. Li and N. Larkin, Adaptive Path Planning for Wire-Feed Additive Manufacturing Using Medial Axis Transformation, J. Clean. Prod., 2016, 133, p 942–952. https://doi.org/10.1016/j.jclepro.2016.06.036

    Article  Google Scholar 

  234. D. Ding, Z. Pan, D. Cuiuri, H. Li, S. Van Duin and N. Larkin, Bead Modelling and Implementation of Adaptive MAT Path in Wire and Arc Additive Manufacturing, Robot. Comput. Integr. Manuf., 2016, 39, p 32–42. https://doi.org/10.1016/j.rcim.2015.12.004

    Article  Google Scholar 

  235. M. Michel, H. Lockett, J. Ding, F. Martina, G. Marinelli and S. Williams, A Modular Path Planning Solution for Wire + Arc Additive Manufacturing. Robot. Comput. Integr. Manuf., 2019, 60, p 1–11. https://doi.org/10.1016/j.rcim.2019.05.009

    Article  Google Scholar 

  236. D. Ye, D. Wu, X. Hua, C. Xu and Y. Wu, Using the Multi-Wire GMAW Processes for Controlling the Formation of Humping, Weld. World., 2017, 61, p 649–658. https://doi.org/10.1007/s40194-017-0458-5

    Article  Google Scholar 

  237. T.C. Nguyen, D.C. Weckman, D.A. Johnson and H.W. Kerr, The Humping Phenomenon During High Speed Gas Metal Arc Welding, Sci. Technol. Weld. Join., 2005, 10, p 447–459. https://doi.org/10.1179/174329305X44134

    Article  Google Scholar 

  238. C.S. Wu, Z.H. Hu and L.M. Zhong, Prevention of Humping Bead Associated with High Welding Speed by Double-Electrode Gas Metal Arc Welding, Int. J. Adv. Manuf. Technol., 2012, 63, p 573–581. https://doi.org/10.1007/s00170-012-3944-3

    Article  Google Scholar 

  239. M. Graf, A. Hälsig, K. Höfer, B. Awiszus and P. Mayr, Thermo-Mechanical Modelling of Wire-Arc Additive Manufacturing (WAAM) of Semi-Finished Products, Metals (Basel), 2018 https://doi.org/10.3390/met8121009

    Article  Google Scholar 

  240. W. Wu, J. Xue, L. Wang, Z. Zhang, Y. Hu and C. Dong, Forming process, microstructure, and mechanical properties of thin-walled 316L stainless steel using speed-cold-welding additive manufacturing, Metals (Basel), 2019 https://doi.org/10.3390/met9010109

    Article  Google Scholar 

  241. Q. Zhan, Y. Liang, J. Ding and S. Williams, A wire deflection detection method based on image processing in wire + arc additive manufacturing, Int J Adv Manuf Technol, 2017, 89, p 755–763. https://doi.org/10.1007/s00170-016-9106-2

    Article  Google Scholar 

  242. X. Chen, H. Zhang, J. Hu, Y. Xiao, A passive on-line defect detection method for wire and arc additive manufacturing based on infrared thermography. Solid Free Fabr 2019 Proc 30th Annu Int Solid Free Fabr Symp - An Addit Manuf Conf SFF (2019), 2019:1497–510

  243. Y. Huang, D. Wu, Z. Zhang, H. Chen and S. Chen, EMD-Based Pulsed TIG Welding Process Porosity Defect Detection and Defect Diagnosis Using GA-SVM, J. Mater. Process. Technol., 2017, 239, p 92–102. https://doi.org/10.1016/j.jmatprotec.2016.07.015

    Article  CAS  Google Scholar 

  244. A. Sumesh, K. Rameshkumar, K. Mohandas and R.S. Babu, Use of Machine Learning Algorithms for Weld Quality Monitoring Using Acoustic Signature, Procedia Comput. Sci., 2015, 50, p 316–322. https://doi.org/10.1016/j.procs.2015.04.042

    Article  Google Scholar 

  245. J. Xiong and G. Zhang, Adaptive Control of Deposited Height in GMAW-Based Layer Additive Manufacturing, J. Mater. Process. Technol., 2014, 214, p 962–968. https://doi.org/10.1016/j.jmatprotec.2013.11.014

    Article  Google Scholar 

  246. J.S. Smith and C. Balfour, Real-time Top-Face Vision Based Control of Weld Pool Size, Ind. Rob., 2005, 32, p 334–340. https://doi.org/10.1108/01439910510600209

    Article  Google Scholar 

  247. Y.K. Liu and Y.M. Zhang, Control of 3D Weld Pool Surface, Control Eng. Pract., 2013, 21, p 1469–1480. https://doi.org/10.1016/j.conengprac.2013.06.019

    Article  Google Scholar 

  248. F. Xu, N. Madhaven, V. Dhokia, A.R. McAndrew, P.A. Colegrove, S. Williams, et al. Multi-Sensor System for Wire-Fed Additive Manufacture of Titanium Alloys. 26th Int Conf Flex Autom Intell Manuf (FAIM 2016) 2016: Article in Press

  249. C. Xia, Z. Pan, J. Polden, H. Li, Y. Xu, S. Chen et al., A Review on Wire Arc Additive Manufacturing: Monitoring, Control and a Framework of Automated System, J. Manuf. Syst., 2020, 57, p 31–45. https://doi.org/10.1016/j.jmsy.2020.08.008

    Article  Google Scholar 

  250. H. Zhao, G. Zhang, Z. Yin and L. Wu, Effects of Interpass Idle Time on Thermal Stresses in Multipass Multilayer Weld-Based Rapid Prototyping, J. Manuf. Sci. Eng. Trans. ASME, 2013, 135, p 1–7. https://doi.org/10.1115/1.4023363

    Article  Google Scholar 

  251. E.R. Denlinger, J.C. Heigel, P. Michaleris and T.A. Palmer, Effect of Inter-Layer Dwell Time on Distortion and Residual Stress in Additive Manufacturing of Titanium and Nickel Alloys, J. Mater. Process. Technol., 2015, 215, p 123–131. https://doi.org/10.1016/j.jmatprotec.2014.07.030

    Article  CAS  Google Scholar 

  252. E. Ingram, O. Golan, R. Haj-Ali and N. Eliaz, The Effect of Localized Vibration During Welding on the Microstructure and Mechanical Behavior of Steel Welds, Materials (Basel), 2019 https://doi.org/10.3390/ma12162553

    Article  Google Scholar 

  253. C. Shen, Z. Pan, D. Cuiuri, D. Ding and H. Li, Influences of Deposition Current and Interpass Temperature to the Fe3Al-Based Iron Aluminide Fabricated Using Wire-Arc Additive Manufacturing Process, Int. J. Adv. Manuf. Technol., 2017, 88, p 2009–2018. https://doi.org/10.1007/s00170-016-8935-3

    Article  Google Scholar 

  254. M.J. Jose, S.S. Kumar and A. Sharma, Vibration Assisted Welding Processes and their Influence on Quality of Welds, Sci. Technol. Weld. Join., 2016, 21, p 243–258. https://doi.org/10.1179/1362171815Y.0000000088

    Article  Google Scholar 

  255. C. Zhang, M. Gao and X. Zeng, Workpiece Vibration Augmented Wire Arc Additive Manufacturing of High Strength Aluminum Alloy, J. Mater. Process. Technol., 2019, 271, p 85–92. https://doi.org/10.1016/j.jmatprotec.2019.03.028

    Article  CAS  Google Scholar 

  256. E.M. Ryan, T.J. Sabin, J.F. Watts and M.J. Whiting, The Influence of Build Parameters and Wire Batch on Porosity of Wire and Arc Additive Manufactured Aluminium Alloy 2319, J. Mater. Process. Technol., 2018, 262, p 577–584. https://doi.org/10.1016/j.jmatprotec.2018.07.030

    Article  CAS  Google Scholar 

  257. Q. Yang, C. Xia, Y. Deng, X. Li and H. Wang, Microstructure and Mechanical Properties of AlSi7Mg0.6 Aluminum Alloy Fabricated by Wire and Arc Additive Manufacturing Based on Cold Metal Transfer (WAAM-CMT), Materials (Basel), 2019 https://doi.org/10.3390/ma12162525

    Article  Google Scholar 

  258. T. Wang, Y. Zhang, Z. Wu and C. Shi, Microstructure and Properties of Die Steel Fabricated by WAAM Using H13 Wire, Vacuum, 2018, 149, p 185–189. https://doi.org/10.1016/j.vacuum.2017.12.034

    Article  CAS  Google Scholar 

  259. D. Kim, S. Rhee and H. Park, Modelling and Optimization of a GMA Welding Process by Genetic Algorithm and Response Surface Methodology, Int J Prod Res, 2002, 40, p 1699–1711. https://doi.org/10.1080/00207540110119964

    Article  Google Scholar 

  260. V. Gunaraj and N. Murugan, Prediction and optimization of weld bead volume for the submerged arc process - Part 2, Weld J (Miami, Fla), 2000, 79, p 331.

    Google Scholar 

  261. V. Gunaraj and N. Murugan, Application of Response Surface Methodology for Predicting Weld Bead Quality in Submerged Arc Welding of Pipes, J. Mater. Process. Technol., 1999, 88, p 266–275. https://doi.org/10.1016/S0924-0136(98)00405-1

    Article  Google Scholar 

  262. N. Srimath and N. Murugan, Development of Mathematical Models for Prediction of Weld Bead Geometry in Cladding Mild Steel Valve Seat Rings by PTAW, Procedia Eng., 2012, 38, p 15–20. https://doi.org/10.1016/j.proeng.2012.06.003

    Article  CAS  Google Scholar 

  263. R. Choteborský, A.H. Rusul, M. Navrátilová, P. Hrabe, Effects of Welding Process Parameters on the Geometry and Dilution of the Bead in the Automatic Surfacing. Conf Proceeding - 4th Int Conf TAE 2010 Trends Agric Eng 2010 (2010), 41:244–7

  264. P.S. Rao, O.P. Gupta, S.S.N. Murty and A.B.K. Rao, Effect of Process Parameters and Mathematical Model for the Prediction of Bead Geometry in Pulsed GMA Welding, Int. J. Adv. Manuf. Technol., 2009, 45, p 496–505. https://doi.org/10.1007/s00170-009-1991-1

    Article  Google Scholar 

  265. Y.S. Tarng and W.H. Yang, Optimisation of the Weld Bead Geometry in Gas Tungsten Arc Welding by the Taguchi Method, Int. J. Adv. Manuf. Technol., 1998, 14, p 549–554. https://doi.org/10.1007/BF01301698

    Article  Google Scholar 

  266. Y.S. Tarng, S.C. Juang and C.H. Chang, The Use of Grey-based Taguchi Methods to Determine Submerged Arc Welding Process Parameters in Hardfacing, J. Mater. Process. Technol., 2002, 128, p 1–6. https://doi.org/10.1016/S0924-0136(01)01261-4

    Article  Google Scholar 

  267. D.S. Nagesh and G.L. Datta, Prediction of Weld Bead Geometry and Penetration in Shielded Metal-Arc Welding Using Artificial Neural Networks, J. Mater. Process. Technol., 2002, 123, p 303–312. https://doi.org/10.1016/S0924-0136(02)00101-2

    Article  Google Scholar 

  268. Y.S. Tarng, W.H. Yang and S.C. Juang, Use of Fuzzy Logic in the Taguchi Method for the Optimization of The Submerged Arc Welding Process, Int. J. Adv. Manuf. Technol., 2000, 16, p 688–694. https://doi.org/10.1007/s001700070040

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindra V. Taiwade.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Additive Manufacturing. The issue was organized by Dr. William Frazier, Pilgrim Consulting, LLC; Mr. Rick Russell, NASA; Dr. Yan Lu, NIST; Dr. Brandon D. Ribic, America Makes; and Caroline Vail, NSWC Carderock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raut, L.P., Taiwade, R.V. Wire Arc Additive Manufacturing: A Comprehensive Review and Research Directions. J. of Materi Eng and Perform 30, 4768–4791 (2021). https://doi.org/10.1007/s11665-021-05871-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05871-5

Keywords

Navigation