Skip to main content

Advertisement

Log in

Correlation between Corrosion Films and Corrosion-Related Defects Formed on 316 Stainless Steel at High Temperatures in Pressurized Water

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

A Correction to this article was published on 25 April 2022

This article has been updated

Abstract

The correlation between corrosion films and corrosion-related defects formed on 316 austenitic stainless steel exposed to 300 °C/10 MPa water for 50 h, 100 h, 200 h and 500 h was characterized by x-ray absorption spectroscopy, grazing incidence x-ray diffraction, scanning electron microscopy/energy-dispersive x-ray spectroscopy and positron annihilation spectroscopy. The corrosion results showed that the oxide films formed were composed of hematite (Fe2O3/Cr2O3) and spinel (FeCr2O4). At the initial corrosion stage, the deposition of these oxide films was accompanied by the formation of abundant corrosion-related defects. As the corrosion duration increased, the formation of more spinel in the oxide films led to a decrease in the density of corrosion-related defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. M. Boisson, L. Legras, E. Andrieu and L. Laffont, Role of irradiation and irradiation defects on the oxidation first stages of a 316L austenitic stainless steel, Corros. Sci., 2019, 161, p 108194.

    CAS  Google Scholar 

  2. Y.X. Qiao, Y.P. Chen, L.L. Li, J. Chen, W. Emori, X.J. Wang, L.L. Yang, H.L. Zhou, G. Song, N. Naik, Z.B. Wang and Z.H. Guo, Corrosion behavior of a nickel-free high-nitrogen stainless steel with hydrogen charging, JOM, 2021 https://doi.org/10.1007/s11837-021-04569-2

    Article  Google Scholar 

  3. R. Fujisawa, K. Nishimura, T. Nishida, M. Sakaihara, Y. Kurata and Y. Watanabe, Corrosion behavior of nickel-based alloys and type 316 stainless steel in slightly oxidizing or reducing supercritical water, Corrosion, 2006, 62, p 270–274.

    CAS  Google Scholar 

  4. W.P. Zhang, G.L. Song, T. Zhu, Y. Xiong, H.L. Ma, Q.Z. Yan, X.Z. Cao, B.Y. Wang and S.X. Jin, Investigation of spatial relationship between helium bubbles and dislocation loops in RAFM steel, J. Nucl. Mater., 2021, 548, p 152862.

    CAS  Google Scholar 

  5. L. Li, S.X. Jin, D.D. Wang, P. Zhang, Y.X. Qiao, R. Tang, Y. Chen, J.L. Zhao, L. Zhao, L.B. Li, X.Z. Cao and B.Y. Wang, Characterization of oxide film in P92 ferritic-martensitic steel exposed to high temperature and pressure water, J. Nucl. Mater., 2020, 541, p 152406.

    CAS  Google Scholar 

  6. J. Chen, R.M. Asmussen, D. Zagidulin, J.J. Noel and D.W. Shoesmith, Electrochemical and corrosion behavior of a 304 stainless-steel-based metal alloy wasteform in dilute aqueous environments, Corros. Sci., 2013, 66, p 142–152.

    CAS  Google Scholar 

  7. I.M. Svishchev, R.A. Carvajal-Ortiz, K.I. Choudhry and D.A. Guzonas, Corrosion behavior of stainless steel 316 in sub- and supercritical aqueous environments: Effect of LiOH additions, Corros. Sci., 2013, 72, p 20–25.

    CAS  Google Scholar 

  8. B. Stellwag, The mechanism of oxide film formation on austenitic stainless steels in high temperature water, Corros. Sci., 1998, 40, p 337–370.

    CAS  Google Scholar 

  9. X. Gao, X.Q. Wu, Z.E. Zhang, H. Guan and E.H. Han, Characterization of oxide films grown on 316L stainless steel exposed to H2O2-containing supercritical water, J. Supercrit. Fluid., 2007, 42, p 157–163.

    CAS  Google Scholar 

  10. Y. Soma, C. Kato and M. Yamamoto, Multi layered surface oxides within crevices of type 316L stainless steels in high-temperature pure water, Corrosion, 2014, 70, p 366–374.

    CAS  Google Scholar 

  11. Y. Behnamian, A. Mostafaei, A. Kohandehghan, B. Zahiri, W.Y. Zheng, D. Guzonas, M. Chmielus, W.X. Chen and J.L. Luo, Corrosion behavior of alloy 316L stainless steel after exposure to supercritical water at 500 °C for 20,000 h, J. Supercrit. Fluid., 2017, 127, p 191–199.

    CAS  Google Scholar 

  12. X.L. Guo, K. Chen, W.H. Gao, Z. Shen and L.F. Zhang, Corrosion behavior of alumina-forming and oxide dispersion strengthened austenitic 316 stainless steel in supercritical water, Corros. Sci., 2018, 138, p 297–306.

    CAS  Google Scholar 

  13. T. Terachi, K. Fujii and K. Arioka, Microstructural characterization of SCC crack tip and oxide film for SUS 316 stainless steel in simulated PWR primary water at 320 degrees C, J. Nucl. Sci. Technol., 2005, 42, p 225–232.

    CAS  Google Scholar 

  14. M.C. Sun, X.Q. Wu, Z.E. Zhang and E.H. Han, Oxidation of 316 stainless steel in supercritical water, Corros. Sci., 2009, 51, p 1069–1072.

    CAS  Google Scholar 

  15. L.J. Dong, Q.J. Peng, Z.M. Zhang, T.S. Shoji, E.H. Han, W. Ke and L. Wang, Effect of dissolved hydrogen on corrosion of 316NG stainless steel in high temperature water, Nucl. Eng. Des., 2015, 295, p 403–414.

    CAS  Google Scholar 

  16. L.L. Yang, M.H. Chen, J.L. Wang, Y.X. Qiao, P.Y. Guo, S.L. Zhu and F.H. Wang, Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation, J. Mater. Sci. Technol., 2020, 45, p 49–58.

    Google Scholar 

  17. L.L. Yang, J.L. Wang, R.Z. Yang, S.S. Yang, Y.X. Jia, M.H. Chen, Y.X. Qiao, P.Y. Guo, S.L. Zhu and F.H. Wang, Oxidation behavior of a nanocrystalline coating with low Ta content at high temperature, Corros. Sci., 2021, 180, p 109182.

    CAS  Google Scholar 

  18. S. Penttila, A. Toivonen, J. Li, W. Zheng and R. Novotny, Effect of surface modification on the corrosion resistance of austenitic stainless steel 316L in supercritical water conditions, J. Supercrit. Fluid., 2013, 81, p 157–163.

    CAS  Google Scholar 

  19. M. Payet, L. Marchetti, M. Tabarant, F. Jomard and J.P. Chevalier, Corrosion mechanisms of 316L stainless steel in supercritical water: The significant effect of work hardening induced by surface finishes, Corros. Sci., 2019, 157, p 157–166.

    CAS  Google Scholar 

  20. Y. Jiao, W. Zheng, D.A. Guzonas, W.G. Cook and J.R. Kish, Effect of thermal treatment on the corrosion resistance of type 316L stainless steel exposed in supercritical water, J. Nucl. Mater., 2015, 464, p 356–364.

    CAS  Google Scholar 

  21. S.S. Raiman and G.S. Was, Accelerated corrosion and oxide dissolution in 316L stainless steel irradiated in situ in high temperature water, J. Nucl. Mater., 2017, 493, p 207–218.

    CAS  Google Scholar 

  22. P. Deng, Q.J. Peng, E.H. Han, W. Ke, C. Sun and Z.J. Jiao, Effect of irradiation on corrosion of 304 nuclear grade stainless steel in simulated PWR primary water, Corros. Sci., 2017, 127, p 91–100.

    CAS  Google Scholar 

  23. S.X. Jin, H.L. Ma, E.Y. Lu, L. Zhou, Q.L. Zhang, P. Fan, Q.Z. Yan, D.Q. Yuan, X.Z. Cao and B.Y. Wang, Depth distributions of cavities in advanced ferritic/martensitic and austenitic steels with high helium pre-implantation and high damage level, Mater. Energy Today, 2021, 20, p 100687.

    CAS  Google Scholar 

  24. Y.C. Wu, Y.Q. Chen, B. Wang, S.J. Wang, Y.C. Jean, R. Suzuki and T. Ohdaira, Slow positron beam study of corrosion-related defects in pure iron, Appl. Surf. Sci., 2006, 252, p 3274–3277.

    CAS  Google Scholar 

  25. H.L. Zhou, F.L. Fu, Z.X. Dai, Y.X. Qiao, J. Chen and W. Liu, Effect of laser power on microstructure and micro-galvanic corrosion behavior of a 6061–T6 aluminum alloy welding joints, Metals, 2021, 11, p 3.

    CAS  Google Scholar 

  26. J.T. Yuan, X.M. Wu, W. Wang, S.L. Zhu and F.H. Wang, The effect of surface finish on the scaling behavior of stainless steel in steam and supercritical water, Oxid. Met., 2013, 79, p 541–551.

    CAS  Google Scholar 

  27. E. Seres and C. Spielmann, Ultrafast soft x-ray absorption spectroscopy with sub-20-fs resolution, Appl. Phys. Lett., 2007, 91, p 121919.

    Google Scholar 

  28. C. Bressler and M. Chergui, Ultrafast X-ray absorption spectroscopy, Chem. Rev., 2004, 104, p 1781–1812.

    CAS  Google Scholar 

  29. S.L.M. Schroeder, Towards a ‘universal curve’ for total electron-yield XAS, Solid State Commun., 1996, 98, p 405–409.

    CAS  Google Scholar 

  30. S.L.M. Schroeder, G.D. Moggridge, T. Rayment and R.M. Lambert, In situ probing of the near-surface properties of heterogeneous catalysts under reaction conditions: An introduction to total electron-yield XAS, J. Mol. Catal. A: Chem., 1997, 119, p 357–365.

    CAS  Google Scholar 

  31. M. Abbate, J.B. Goedkoop, F.M.F. Degroot, M. Grioni, J.C. Fuggle, S. Hofmann, H. Petersen and M. Sacchi, Probing depth of soft-X-ray absorption-spectroscopy measured in total-electron-yield mode, Surf. Interface Anal., 1992, 18, p 65–69.

    CAS  Google Scholar 

  32. X.X. Ye, H. Ai, Z. Guo, H.F. Huang, L. Jiang, J.Q. Wang, Z.J. Li and X.T. Zhou, The high-temperature corrosion of Hastelloy N alloy (UNS N10003) in molten fluoride salts analysed by STXM, XAS, XRD, SEM, EPMA, TEM/EDS, Corros. Sci., 2016, 106, p 249–259.

    CAS  Google Scholar 

  33. S.X. Jin, X.Z. Cao, G.D. Cheng, X.Y. Lian, T. Zhu, P. Zhang, R.S. Yu and B.Y. Wang, Thermally promoted evolution of open-volume defects and Cu precipitates in the deformed FeCu alloys, J. Nucl. Mater., 2018, 501, p 293–301.

    CAS  Google Scholar 

  34. S. Jin, B. Mo, W. Zhang, T. Zhang, Y. Li, L. Guo, X. Cao and B. Wang, Towards understanding the evolution of dislocation loops and their interaction with vacancies in Fe9Cr alloy during the irradiation swelling incubation period, Materialia, 2019, 5, p 100241.

    CAS  Google Scholar 

  35. A. Vehanen, K. Saarinen, P. Hautojarvi and H. Huomo, Profiling multilayer structures with monoenergetic positrons, Phys. Rev. B, 1987, 35, p 4606–4610.

    CAS  Google Scholar 

  36. T.M. Wang, B.Y. Wang, S.H. Zhang and M. Doyama, Study of the crystal defects in fecrni alloy, Phys. Status. Solidi A, 1992, 134, p 127–132.

    CAS  Google Scholar 

  37. U. Holzwarth and P. Schaaff, Nondestructive monitoring of fatigue damage evolution in austenitic stainless steel by positron-lifetime measurements, Phys. Rev. B, 2004, 69, p 094110.

    Google Scholar 

  38. Y.H. Gong, S.X. Jin, T. Zhu, L. Cheng, X.Z. Cao, L. You, G.H. Lu, L.P. Guo and B.Y. Wang, Helium self-trapping and diffusion behaviors in deformed 316L stainless steel exposed to high flux and low energy helium plasma, Nucl. Fusion, 2018, 58, p 046011.

    Google Scholar 

  39. R. Parna, E. Nommiste, A. Kikas, P. Jussila, M. Hirsimaki, M. Valden and V. Kisand, Electron spectroscopic study of passive oxide layer formation on Fe-19Cr-18Ni-1Al-TiC austenitic stainless steel, J. Electron Spectrosc., 2010, 182, p 108–114.

    Google Scholar 

  40. L. Soriano, M. Abbate, F.M.F. Degroot, D. Alders, J.C. Fuggle, S. Hofmann, H. Petersen and W. Braun, Chemical analysis of passivated and oxidized layers on FeCr and FeTi alloys by soft-x-ray absorption-spectroscopy, Surf. Interface Anal., 1993, 20, p 21–26.

    CAS  Google Scholar 

  41. F.J. Perez, A. Gutierrez, M.F. Lopez, M.P. Hierro and F. Pedraza, Surface modification of ion-implanted AISI 304 stainless steel after oxidation process: X-ray absorption spectroscopy analysis, Thin Solid Films, 2002, 415, p 258–265.

    CAS  Google Scholar 

  42. A.M. Olmedo, M.G. Alvarez, G. Dominguez and R. Bordoni, Corrosion behavior of T91 and type AISI 403 stainless steel in supercritical water, Proc. Mat. Sci., 2012, 1, p 543–549.

    CAS  Google Scholar 

  43. R. Novotny, P. Janik, S. Penttila, P. Hahner, J. Macak, J. Siegl and P. Hausild, High Cr ODS steels performance under supercritical water environment, J. Supercrit. Fluid., 2013, 81, p 147–156.

    CAS  Google Scholar 

  44. E.J. Opila, D.L. Myers, N.S. Jacobson, I.M.B. Nielsen, D.F. Johnson, J.K. Olminsky and M.D. Allendorf, Theoretical and experimental investigation of the thermochemistry of CrO2(OH)2(g), J. Phys. Chem. A, 2007, 111, p 1971–1980.

    CAS  Google Scholar 

  45. Y.X. Qiao, S.L. Sheng, L.M. Zhang, J. Chen, L.L. Yang, H.L. Zhou, Y.X. Wang, H.B. Li and Z.B. Zheng, Friction and wear behaviors of a high nitrogen austenitic stainless steel Fe-19Cr-15Mn-0.66N, J. Min. Metall. Sect. B-Metall., 2021 https://doi.org/10.2298/JMMB201026025Q

    Article  Google Scholar 

  46. B. George, C. Janot, D. Ablitzer and Y. Chabre, A mechanism for self-diffusion and impurity diffusion in vanadium, Philos. Mag. A, 1981, 44, p 763–778.

    CAS  Google Scholar 

  47. Y.W. Xu, H.Y. Jing, L.Y. Xu, Y.D. Han and L. Zhao, Effect of overload on the oxidation behavior of CF8A austenitic stainless steel in a high-temperature water environment, Corros. Sci., 2020, 162, p 108219.

    CAS  Google Scholar 

  48. W.J. Kuang, X.Q. Wu, E.H. Han and L.Q. Ruan, Effect of nickel ion from autoclave material on oxidation behaviour of 304 stainless steel in oxygenated high temperature water, Corros. Sci., 2011, 53, p 1107–1114.

    CAS  Google Scholar 

  49. W.J. Kuang, X.Q. Wu, E.H. Han and J.C. Rao, Effect of alternately changing the dissolved Ni ion concentration on the oxidation of 304 stainless steel in oxygenated high temperature water, Corros. Sci., 2011, 53, p 2582–2591.

    CAS  Google Scholar 

  50. P.J. Schultz and K.G. Lynn, Interaction of positron beams with surfaces, thin-films, and interfaces, Rev. Mod. Phys., 1988, 60, p 701–779.

    CAS  Google Scholar 

  51. Y.H. Gong, X.Z. Cao, S.X. Jin, E.Y. Lu, Y.C. Hu, T. Zhu, P. Kuang, Q. Xu and B.Y. Wang, Effect of dislocations on helium retention in deformed pure iron, J. Nucl. Mater., 2016, 482, p 93–98.

    CAS  Google Scholar 

  52. P. Zhang, S.X. Jin, E.Y. Lu, B.Y. Wang, Y.N. Zheng, D.Q. Yuan and X.Z. Cao, Effect of annealing on VmHn complexes in hydrogen ion irradiated Fe and Fe-0.3% Cu alloys, J. Nucl. Mater., 2015, 459, p 301–305.

    CAS  Google Scholar 

  53. Z.J. Zhu, M.Y. Yao, J.J. Shi, C.L. Yao, E.Y. Lu, X.Z. Cao, B.Y. Wang and Y.C. Wu, Study of corrosion-related defects of zirconium alloys with slow positron beam, J. Nucl. Mater., 2018, 508, p 12–19.

    CAS  Google Scholar 

  54. S.X. Jin, P. Zhang, E.Y. Lu, L.P. Guo, B.Y. Wang and X.Z. Cao, Correlation between Cu precipitates and irradiation defects in Fe-Cu model alloys investigated by positron annihilation spectroscopy, Acta Mater., 2016, 103, p 658–664.

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (11775236). The authors gratefully acknowledge Mr. Peng Zhang and Prof. Baoyi Wang from IHEP, CAS for their discussion of PAS experimental results. Experimental assistance on XAS processing from Dr. Jiaou Wang (IHEP, CAS) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanxin Qiao or Shuoxue Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: In the originally published article, the fifth author’s name was misspelled as “Xiongzhong Cao”. The correct name is “Xingzhong Cao”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Qiao, Y., Chen, Y. et al. Correlation between Corrosion Films and Corrosion-Related Defects Formed on 316 Stainless Steel at High Temperatures in Pressurized Water. J. of Materi Eng and Perform 30, 3577–3585 (2021). https://doi.org/10.1007/s11665-021-05688-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05688-2

Keywords

Navigation