Skip to main content
Log in

Tensile Flow Analysis of Austenitic Type 316LN Stainless Steel: Effect of Nitrogen Content

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The tensile flow analysis of austenitic type 316LN stainless steel with nitrogen level ranging from 0.07 to 0.22 wt.% is studied at the temperatures from 300 to 1123 K and at a strain rate of 3 × 10−3 s−1 using Ludwigson flow relationship. It has been observed that Ludwigson flow relationship provided an appropriate description for the σ-εp behavior and subsequent work/strain hardening response which displayed three independent temperature regions of ambient (300 K), intermediate (523-923 K) and elevated temperature (≥ 923 K). The anomalous response in terms of stress–strain data grouping together in a narrow band and appearance of peaks/plateau in Ludwigson parameters in the intermediate temperature region (523-923 K) is attributed to the manifestation of dynamic strain aging (DSA). The parameters such as strain hardening exponent (n1) and coefficient (K1), transition stress (σL) and transition strain (ɛL) increased with increasing the amount of nitrogen that in turn diminished the propensity to dynamic recovery. The applicability of Ludwigson equation permitted to predict the flow stress response and yield strength as well as ultimate tensile strength values with one-to-one correlation in comparison with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.H. Hollomon, Tensile Deformation, Trans. AIME, 1945, 162, p 268–290.

    Google Scholar 

  2. P. Ludwik, Elemente Der Technologischen Mechanic, Verlag, von julius Springer , Leipzing, 1909, p 32

    Book  Google Scholar 

  3. H.W. Swift, Plastic Instability Under Plane Stress, J. Mech. Phys. Solids, 1952, 1, p 1–18.

    Article  Google Scholar 

  4. D.C. Ludwigson, Modified Stress–Strain Relation for FCC Metals and Alloys, Metall. Trans., 1971, 2(10), p 2825–2828.

    Article  CAS  Google Scholar 

  5. E. Voce, The Relationship between Stress and Strain from Homogeneous Deformation, J. Inst. Met., 1948, 74, p 537–562.

    CAS  Google Scholar 

  6. E. Voce, A Practical Strain Hardening Function, Metallurgia, 1955, 51, p 219–226.

    Google Scholar 

  7. B.K. Choudhary, E.I. Samuel, K. Bhanu Sankara Rao and S.L. Mannan, Tensile Stress–Strain and Work Hardening Behaviour of 316LN Austenitic Stainless Steel, Mater. Sci. Technol., 2001, 17(2), p 223–231.

    Article  CAS  Google Scholar 

  8. D.P. Rao Palaparti and B.K. Choudhary, Influence of Processing Route and Section Size on Tensile Stress–Strain and Work Hardening Behaviour of 9Cr-1Mo Ferritic Steel, Mater. High Temp., 2012, 30(4), p 295–305.

    Article  Google Scholar 

  9. B.K. Choudhary, J. Christopher, D.P. Rao Palaparti, E. Isaac Samuel and M.D. Mathew, Influence of Temperature and Post-weld Heat Treatment on Tensile Stress–Strain and Work Hardening Behaviour of Modified 9Cr-1Mo Steel, Mater. Des., 2013, 52, p 58–66.

    Article  CAS  Google Scholar 

  10. B.K. Choudhary, Influence of Strain Rate and Temperature on Tensile Deformation and Fracture Behaviour of Type 316L (N) Austenitic Stainless Steel, Metall. Mater. Trans. A, 2014, 45(1), p 302–316.

    Article  CAS  Google Scholar 

  11. S.L. Mannan, S.C. Chetal, B. Raj and S.B. Bhoje, Selection of Materials for Prototype Fast Breeder Reactor, Trans. Indian Inst. Met., 2003, 56, p 155–178.

    CAS  Google Scholar 

  12. F.M. Bayoumi and W.A. Ghanem, Effect of Nitrogen on the Corrosion Behaviour of Austenitic Stainless Steel in Chloride Solutions, Mater. Lett., 2005, 59(26), p 3311–3314.

    Article  CAS  Google Scholar 

  13. J.W. Simmons, Overview: High-Nitrogen Alloying of Stainless Steels, Mater. Sci. Eng. A, 1996, A207, p 159–169.

    Article  CAS  Google Scholar 

  14. S. Wang, K. Yang, Y. Shan and L. Li, Study on Cold Deformation Behaviors of a High Nitrogen Austenitic Stainless Steel and 316L Stainless Steel, Acta Metall Sin., 2007, 43, p 171–176.

    CAS  Google Scholar 

  15. V.S. Srinivasan, B.K. Choudhary, M.D. Mathew and T. Jayakumar, Long-Term Creep-Rupture Strength Prediction for Modified 9Cr-1Mo Ferritic Steel and Type 316L (N) Austenitic Stainless Steel, Mater. High Temp., 2012, 29(1), p 41–48.

    Article  CAS  Google Scholar 

  16. L.A. Norström, The Influence of Nitrogen and Grain Size on Yield Strength in Type AISI 316L Austenitic Stainless Steel, Met. Sci., 1977, 11(6), p 208–212.

    Article  Google Scholar 

  17. W.S. Ryu, D.W. Kim, W.G. Kim, H.H. Kuk, High-Temperature Behaviour of Type 316L (N) Stainless Steel, Seoul, Korea, 1999, SMIRT-15, p 275–282

  18. ASTM E112-13, Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken, PA, 2013, p 1–28

  19. V. Ganesan, M.D. Mathew and K.B.S. Rao, Influence of Nitrogen on Tensile Properties of 316LN Stainless Steel, Mater. Sci. Technol., 2009, 25(5), p 614–618.

    Article  CAS  Google Scholar 

  20. RCC-MR, Design and Manufacturing Rules for Fast Reactors, AFCEN, 1985

  21. ASTM E220-19, Standard Test Method for Calibration of Thermocouples By Comparison Techniques, ASTM International, West Conshohocken, PA, 2019, p 1–16

  22. ASTM E21-20, Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials, ASTM International, West Conshohocken, PA, 2020, p 1–9

  23. ASTM E1012-19, Standard Practice for Verification of Testing Frame and Specimen Alignment Under Tensile and Compressive Axial Force Application, ASTM International, West Conshohocken, PA, 2019, p 1–17

  24. ASTM E8/E8M, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2016, p 1–27

  25. P. Rodriguez, Serrated Plastic Flow, Bull. Mater. Sci., 1984, 6(4), p 653–663.

    Article  Google Scholar 

  26. E. Pink and A. Grinberg, Serrated Flow in a Ferritic Stainless Steel, Mater. Sci. Eng., 1981, 51(1), p 1–8.

    Article  CAS  Google Scholar 

  27. A.S. Rao, P. Manda, M.K. Mohan and A.K. Singh, Microstructure and Mechanical Properties of Vacuum Induction Melted as-cast 43Ni-29Fe-18W-10Co Matrix Alloy, Vacuum, 2018, 155, p 169–177.

    Article  CAS  Google Scholar 

  28. S. Degallaix, J. Foct and A. Hendry, Mechanical Behaviour of High-Nitrogen Stainless Steels, Mater. Sci. Technol., 1986, 2(9), p 946–950.

    Article  CAS  Google Scholar 

  29. V.G. Berns, Gavriljuk and Hans: ‘High Nitrogen Steels,’ Springer, Berlin, 1999.

    Google Scholar 

  30. Y.C. Lin, H. Yang and L. Li, Effects of Solutionizing Cooling Processing on γ″(Ni3Nb) Phase and Work Hardening Characteristics of a Ni-Fe-Cr-Base Superalloy, Vacuum, 2017, 144, p 86–93.

    Article  CAS  Google Scholar 

  31. M.F. Ashby and H.J. Frost, Deformation Mechanism Maps, Pergamon Press, Oxford, 1982.

    Google Scholar 

  32. B.K. Choudhary, Activation Energy for Serrated Flow in Type 316L (N) Austenitic Stainless Steel, Mater. Sci. Eng. A, 2014, A603, p 160–168.

    Article  Google Scholar 

  33. Y.C. Lin, H. Yang, D.-G. He and J. Chen, A Physically-Based Model Considering Dislocation-Solute Atom Dynamic Interactions for a Nickel-Based Superalloy at Intermediate Temperatures, Mater. Des., 2019, 183, p 108–122.

    Article  Google Scholar 

  34. Y.C. Lin, H. Yang, Y. Xin and C.-Z. Li, Effect of Initial Microstructure on Serrated Flow Features and Fracture Mechanisms of a Nickel-Based Superalloy, Mater. Charact., 2018, 144, p 9–21.

    Article  CAS  Google Scholar 

  35. Y.C. Lin, H. Yang, X.-M. Chen and D.-D. Chen, Influence of initial Microstructures on Portevin-Le Chatelier Effect and Mechanical Properties of a Ni- Fe-Cr- base Superalloy, Adv. Eng. Mater., 2018, 218, p 1800234.

    Article  Google Scholar 

  36. M.L.G. Byrnes, M. Grujicic and W.S. Owen, Nitrogen Strengthening of a Stable Austenitic Stainless Steel, Acta. Metall., 1987, 35(7), p 1853–1862.

    Article  CAS  Google Scholar 

  37. G.V. Prasad Reddy, R. Kannan, K. Mariappan, R. Sandhya, S. Sankaran and K. Bhanu Sankara Rao, Effect of Strain Rate on Low Cycle Fatigue of 316LN Stainless Steel with Varying Nitrogen Content: Part-I Cyclic Deformation Behavior, Int. J. Fatigue, 2015, 81, p 299–308.

    Article  CAS  Google Scholar 

  38. G.V. Prasad Reddy, R. Sandhya, S. Sankaran and M.D. Mathew, Low Cycle Fatigue Behavior of 316LN Stainless Steel Alloyed with Varying Nitrogen Content. Part I: Cyclic Deformation Behavior, Met. Metall. Trans. A, 2014, 45A, p 5044–5056.

    Article  Google Scholar 

  39. G.V. Prasad Reddy, R. Sandhya, M. Valsan, K. Bhanu Sankara Rao and S. Sankaran, Strain Controlled Fatigue Deformation and Fracture of Nitrogen Alloyed 316LN Austenitic Stainless Steel, Trans. Indian Inst. Met., 2010, 63(2–3), p 505–510.

    Article  CAS  Google Scholar 

  40. U. Ehrnstén, A. Toivonen, M. Ivanchenko, V. Nevdacha, Y. Yagozinskyy and H. Hanninen, Dynamic Strain Ageing of Deformed Nitrogen-Alloyed AISI 316 Stainless Steels, Eur. Fed. Corros. Publ., 2007, 51, p 103.

    Google Scholar 

  41. D.J. Michel, J. Moteff and A.J. Lovell, Substructure of Type 316 Stainless Steel Deformed in Slow Tension at a Temperature between 21 and 816 °C, Acta Metall., 1973, 21(9), p 1269–1277.

    Article  CAS  Google Scholar 

  42. B.P. Kashyap, K. Mc Taggart and K. Tangri, Study on the Substructure Evolution and Flow Behaviour in Type 316L Stainless Steel over the Temperature Range 21–900 °C, Philos. Mag., 1988, 57(1), p 97–114.

    Article  CAS  Google Scholar 

  43. R.P. Reed and R.E. Schramm, Stacking Fault Energies of Seven Commercial Austenitic Stainless Steels, Metal. Mater. Trans. A, 1975, 6(7), p 1345–1351.

    Article  Google Scholar 

  44. S. Kumar, B. Aashranth, D. Samantaray, M. Arvinth Davinci, U. Borah and A.K. Bhaduri, Influence of Nitrogen on the Kinetics of Dynamic Recrystallization in Fe-Cr-Ni-Mo Steel, Vacuum, 2018, 156, p 20–29.

    Article  CAS  Google Scholar 

  45. A. Pineau and L. Remy, Temperature Dependence of Stacking Fault Energy in Close-Packed Metals and Alloys, Mater. Sci. Eng., 1978, 36(1), p 47–63.

    Article  Google Scholar 

  46. A.P. Singh, G.M.D. Murty and S. Jha, Stress–Strain Behaviour of Nitrogen-Bearing Austenitic Stainless Steels in the Temperature Range 298–473 K, J. Mater. Sci., 1995, 30(24), p 6316–6328.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Director IGCAR, Director MMG, Associate Director MMG and Head, MDTD for their consistent encouragement and unconditional support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Rao Palaparti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palaparti, D.P.R., Ganesan, V., Christopher, J. et al. Tensile Flow Analysis of Austenitic Type 316LN Stainless Steel: Effect of Nitrogen Content. J. of Materi Eng and Perform 30, 2074–2082 (2021). https://doi.org/10.1007/s11665-021-05484-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05484-y

Keywords

Navigation