Skip to main content
Log in

Effect of Heat Treatment on Microstructures and Mechanical Behaviors of 316L Stainless Steels Synthesized by Selective Laser Melting

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, 316L austenite stainless steels were fabricated by the selective laser melting (SLM) technique, and the as-printed samples were then treated by using two various routines, namely the intercritical annealing (IA) and the deep cryogenic treatment (DCT), respectively. Microstructural characterization, nanoindentation creep tests as well as tensile experiments were also performed on the achieved specimens to evaluate the effect brought by the various heat treatment routines. It is found that DCT treatment produces a finer microstructure with higher quantity of homogenous tiny precipitates, compared with the as-printed SLM and single IA counterparts. Such microstructure of the DCT specimen leads to a desirable indentation creep resistance at room temperature as well as a good mechanical performance on tension. In addition, applying a prior deep cryogenic treatment before the intercritical annealing brings more positive effects on the mechanical properties than only using IA. The result indicates that the DCT routine is definitely considerably beneficial for fabricating reliable metallic products fabricated by selective laser melting, and it provides an efficient alternative in real manufactures as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Bartolomeu, M. Buciumeanu, E. Pinto, N. Alves, O. Carvalho, F.S. Silva, and G. Miranda, 316L Stainless Steel Mechanical and Tribological Behavior—A Comparison Between Selective Laser Melting, Hot Pressing and Conventional Casting, Addit. Manuf., 2017, 16, p 81–89

    CAS  Google Scholar 

  2. G. Miranda, S. Faria, F. Bartolomeu, E. Pinto, N. Alves, N. Peixinho, M. Gasik, and F.S. Silva, A Study on the Production of Thin-Walled Ti6Al4V Parts by Selective Laser Melting, J. Manuf. Process., 2019, 39, p 346–355

    Google Scholar 

  3. L. Chai, K. Xiang, J. Xia, V. Fallah, K.L. Murty, Z. Yao, and B. Gan, Effects of Pulsed Laser Surface Treatments on Microstructural Characteristics and Hardness of CrCoNi Medium-Entropy Alloy, Philos. Mag., 2019, 99, p 3015–3031

    CAS  Google Scholar 

  4. M. Yang and R.D. Sisson, Carburizing Heat Treatment of Selective-Laser-Melted 20MnCr5 Steel, J. Mater. Eng. Perform., 2020, 29, p 3476–3485

    CAS  Google Scholar 

  5. Y. Liu, Y. Yang, and D. Wang, A Study on the Residual Stress During Selective Laser Melting (SLM) of Metallic Powder, Int. J. Adv. Manuf. Technol., 2016, 87, p 647–656

    Google Scholar 

  6. O. Salman, F. Brenne, T. Niendorf, J. Eckert, K. Prashanth, T. He, and S. Scudino, Impact of the Scanning Strategy on the Mechanical Behavior of 316L Steel Synthesized by Selective Laser Melting, J. Manuf. Process., 2019, 45, p 255–261

    Google Scholar 

  7. G.E. Bean, T.D. McLouth, D.B. Witkin, S.D. Sitzman, P.M. Adams, and R.J. Zaldivar, Build Orientation Effects on Texture and Mechanical Properties of Selective Laser Melting Inconel 718, J. Mater. Eng. Perform., 2019, 28, p 1942–1949

    CAS  Google Scholar 

  8. T. Vilaro, C. Colin, and J.D. Bartout, As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting, Metall. Mater. Trans. A, 2011, 42, p 3190–3199

    CAS  Google Scholar 

  9. J. Zhang, A. Chaudhari, and H. Wang, Surface Quality and Material Removal in Magnetic Abrasive Finishing of Selective Laser Melted 316L Stainless Steel, J. Manuf. Process., 2019, 45, p 710–719

    Google Scholar 

  10. S. MohdYusuf, Y. Chen, S. Yang, and N. Gao, Microstructural Evolution and Strengthening of Selective Laser Melted 316L Stainless Steel Processed by High-Pressure Torsion, Mater. Charact., 2019, 159, p 110012

    Google Scholar 

  11. D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, and J. Bültmann, High Power Selective Laser Melting (HP SLM) of Aluminum Parts, Phys. Procedia, 2011, 12, p 271–278

    CAS  Google Scholar 

  12. J. Delgado, J. Ciurana, and C.A. Rodríguez, Influence of Process Parameters on Part Quality and Mechanical Properties for DMLS and SLM with Iron-Based Materials, Int. J. Adv. Manuf. Technol., 2011, 60, p 601–610

    Google Scholar 

  13. P. Lott, H. Schleifenbaum, W. Meiners, K. Wissenbach, C. Hinke, and J. Bültmann, Design of an Optical system for the In Situ Process Monitoring of Selective Laser Melting (SLM), Phys. Procedia, 2011, 12, p 683–690

    Google Scholar 

  14. M. Pavlov, M. Doubenskaia, and I. Smurov, Pyrometric Analysis of Thermal Processes in SLM Technology, Phys. Procedia, 2010, 5, p 523–531

    Google Scholar 

  15. R. Li, Y. Shi, Z. Wang, L. Wang, J. Liu, and W. Jiang, Densification Behavior of Gas and Water Atomized 316L Stainless Steel Powder During Selective Laser Melting, Appl. Surf. Sci., 2010, 256, p 4350–4356

    CAS  Google Scholar 

  16. M. Simonelli, C. Tuck, N.T. Aboulkhair, I. Maskery, I. Ashcroft, R.D. Wildman, and R. Hague, A Study on the Laser Spatter and the Oxidation Reactions During Selective Laser Melting of 316L Stainless Steel, Al-Si10-Mg, and Ti-6Al-4V, Metall. Mater. Trans. A, 2015, 46, p 3842–3851

    CAS  Google Scholar 

  17. O.O. Salman, C. Gammer, A.K. Chaubey, J. Eckert, and S. Scudino, Effect of Heat Treatment on Microstructure and Mechanical Properties of 316L Steel Synthesized by Selective Laser Melting, Mater. Sci. Eng. A, 2019, 748, p 205–212

    CAS  Google Scholar 

  18. D. Kong, C. Dong, X. Ni, L. Zhang, J. Yao, C. Man, X. Cheng, K. Xiao, and X. Li, Mechanical Properties and Corrosion Behavior of Selective Laser Melted 316L Stainless Steel After Different Heat Treatment Processes, J. Mater. Sci. Technol., 2019, 35, p 1499–1507

    Google Scholar 

  19. B. AlMangour, D. Grzesiak, and J.-M. Yang, Selective Laser Melting of TiB2/316L Stainless Steel Composites: The Roles of Powder Preparation and Hot Isostatic Pressing Post-Treatment, Powder Technol., 2017, 309, p 37–48

    CAS  Google Scholar 

  20. T. Simson, A. Emmel, A. Dwars, and J. Böhm, Residual Stress Measurements on AISI, 316L Samples Manufactured by Selective Laser Melting, Addit. Manuf., 2017, 17, p 183–189

    CAS  Google Scholar 

  21. X. Li, L. Shi, Y. Liu, K. Gan, and C. Liu, Achieving a Desirable Combination Of Mechanical Properties in HSLA Steel Through Step Quenching, Mater. Sci. Eng. A, 2020, 772, p 138683

    CAS  Google Scholar 

  22. F. Brenne, A. Taube, M. Pröbstle, S. Neumeier, D. Schwarze, M. Schaper, and T. Niendorf, Microstructural Design of Ni-Base Alloys for High-Temperature Applications: Impact of Heat Treatment on Microstructure and Mechanical Properties After Selective Laser Melting, Progress Addit. Manuf., 2016, 1, p 141–151

    Google Scholar 

  23. M. Montero Sistiaga, S. Nardone, C. Hautfenne, J. Van Humbeeck, Effect of heat treatment of 316L stainless steel produced by selective laser melting (SLM), in Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference, Solid Freeform Fabrication: 2016; pp 558–565.

  24. A.P. Ventura, C.A. Wade, G. Pawlikowski, M. Bayes, M. Watanabe, and W.Z. Misiolek, Mechanical Properties and Microstructural Characterization of Cu-43 Pct Sn Fabricated by Selective Laser Melting, Metall. Mater. Trans. A, 2016, 48, p 178–187

    Google Scholar 

  25. B. Al-Mangour, P. Vo, R. Mongrain, E. Irissou, and S. Yue, Effect of Heat Treatment on the Microstructure and Mechanical Properties of Stainless Steel 316L Coatings Produced by Cold Spray for Biomedical Applications, JTST, 2014, 23, p 641–652

    CAS  Google Scholar 

  26. W.E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform., 2014, 23, p 1917–1928

    CAS  Google Scholar 

  27. J. Li, X. Yan, X. Liang, H. Guo, and D.Y. Li, Influence of Different Cryogenic Treatments on High-Temperature Wear Behavior of M2 Steel, Wear, 2017, 376–377, p 1112–1121

    Google Scholar 

  28. B.B. He, H.W. Luo, and M.X. Huang, Experimental Investigation on a Novel Medium Mn Steel Combining Transformation-Induced Plasticity And Twinning-Induced Plasticity Effects, Int. J. Plast, 2016, 78, p 173–186

    CAS  Google Scholar 

  29. M. Padmakumar, J. Guruprasath, P. Achuthan, and D. Dinakaran, Investigation of Phase Structure of Cobalt and its Effect in WC–Co Cemented Carbides Before and After Deep Cryogenic Treatment, Int. J. Refract. Hard. Met., 2018, 74, p 87–92

    CAS  Google Scholar 

  30. V.G. Gavriljuk, W. Theisen, V.V. Sirosh, E.V. Polshin, A. Kortmann, G.S. Mogilny, Y.N. Petrov, and Y.V. Tarusin, Low-Temperature Martensitic Transformation in Tool Steels in Relation to Their Deep Cryogenic Treatment, Acta Mater., 2013, 61, p 1705–1715

    CAS  Google Scholar 

  31. Y.J. Liu, Z. Liu, Y. Jiang, G.W. Wang, Y. Yang, and L.C. Zhang, Gradient in Microstructure and Mechanical Property of Selective Laser Melted AlSi10Mg, J. Alloys Compd., 2018, 735, p 1414–1421

    CAS  Google Scholar 

  32. Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, and T. Zhu, Additively Manufactured Hierarchical Stainless Steels with High Strength and Ductility, Nat. Mater., 2017, 17, p 63–71

    Google Scholar 

  33. T. Kurzynowski, K. Gruber, W. Stopyra, B. Kuźnicka, and E. Chlebus, Correlation Between Process Parameters, Microstructure and Properties of 316 L Stainless Steel Processed by Selective Laser Melting, Mater. Sci. Eng. A, 2018, 718, p 64–73

    CAS  Google Scholar 

  34. C. Man, Z. Duan, Z. Cui, C. Dong, D. Kong, T. Liu, S. Chen, and X. Wang, The Effect of Sub-grain Structure on Intergranular Corrosion of 316L Stainless Steel Fabricated via Selective Laser Melting, Mater. Lett., 2019, 243, p 157–160

    CAS  Google Scholar 

  35. T.V. Kumar, R. Thirumurugan, and B. Viswanath, Influence of Cryogenic Treatment on the Metallurgy of Ferrous Alloys: A Review, Mater. Manuf. Processes, 2017, 32, p 1789–1805

    CAS  Google Scholar 

  36. A.K. Singla, J. Singh, and V.S. Sharma, Processing of Materials at Cryogenic Temperature and its Implications in Manufacturing: A Review, Mater. Manuf. Processes, 2018, 33, p 1603–1640

    CAS  Google Scholar 

  37. J. Wang, R. Fu, Y. Li, and J. Zhang, Effects of Deep Cryogenic Treatment and Low-Temperature Aging on the Mechanical Properties of Friction-Stir-Welded Joints of 2024-T351 Aluminum Alloy, Mater. Sci. Eng. A, 2014, 609, p 147–153

    CAS  Google Scholar 

  38. P.C. Collins, D.A. Brice, P. Samimi, I. Ghamarian, and H.L. Fraser, Microstructural Control of Additively Manufactured Metallic Materials, Annu. Rev. Mater. Res., 2016, 46, p 63–91

    CAS  Google Scholar 

  39. D. Das, A.K. Dutta, and K.K. Ray, On the Refinement of Carbide Precipitates by Cryotreatment in AISI, D2 Steel, Philos. Mag., 2009, 89, p 55–76

    CAS  Google Scholar 

  40. C.L. Miao, C.J. Shang, H.S. Zurob, G.D. Zhang, and S.V. Subramanian, Recrystallization, Precipitation Behaviors, and Refinement of Austenite Grains in High Mn, High Nb Steel, Metall. Mater. Trans. A, 2011, 43, p 665–676

    Google Scholar 

  41. D. Wasnik, Precipitation Stages in a 316L Austenitic Stainless Steel, Scr. Mater., 2003, 49, p 135–141

    CAS  Google Scholar 

  42. Y. Zhong, L. Liu, S. Wikman, D. Cui, and Z. Shen, Intragranular Cellular Segregation Network Structure Strengthening 316L Stainless Steel Prepared by Selective Laser Melting, J. Nucl. Mater., 2016, 470, p 170–178

    CAS  Google Scholar 

  43. G.P. Zhang, C.A. Volkert, R. Schwaiger, P. Wellner, E. Arzt, and O. Kraft, Length-Scale-Controlled Fatigue Mechanisms in Thin Copper Films, Acta Mater., 2006, 54, p 3127–3139

    CAS  Google Scholar 

  44. H. Fan, S. Aubry, A. Arsenlis, and J.A. El-Awady, Orientation Influence on Grain Size Effects in Ultrafine-Grained Magnesium, Scr. Mater., 2015, 97, p 25–28

    CAS  Google Scholar 

  45. M. Yang, D. Yan, F. Yuan, P. Jiang, E. Ma, and X. Wu, Dynamically Reinforced Heterogeneous Grain Structure Prolongs Ductility in a Medium-Entropy Alloy with Gigapascal Yield Strength, PNAS, 2018, 115, p 7224–7229

    CAS  Google Scholar 

  46. A. Bhowmik, J. Lee, T.B. Britton, W. Liu, T.-S. Jun, G. Sernicola, M. Karimpour, D.S. Balint, and F. Giuliani, Deformation Behaviour of [001] Oriented MgO Using Combined in Situ Nano-Indentation and Micro-Laue Diffraction, Acta Mater., 2018, 145, p 516–531

    CAS  Google Scholar 

  47. P. Kral, J. Dvorak, S. Zherebtsov, G. Salishchev, M. Kvapilova, and V. Sklenicka, Effect of Severe Plastic Deformation on Creep Behaviour of a Ti–6Al–4V Alloy, J. Mater. Sci., 2013, 48, p 4789–4795

    CAS  Google Scholar 

  48. T. Chen, L. Tan, Z. Lu, and H. Xu, The Effect of Grain Orientation on Nanoindentation Behavior of Model Austenitic Alloy Fe-20Cr-25Ni, Acta Mater., 2017, 138, p 83–91

    CAS  Google Scholar 

  49. C.L. Wang, Y.H. Lai, J.C. Huang, and T.G. Nieh, Creep of Nanocrystalline Nickel: A Direct Comparison Between Uniaxial and Nanoindentation Creep, Scr. Mater., 2010, 62, p 175–178

    CAS  Google Scholar 

  50. N.A. Sakharova, M.C. Oliveira, J.M. Antunes, and J.V. Fernandes, On the Determination of the Film Hardness in Hard Film/Substrate Composites Using Depth-Sensing Indentation, Ceram. Int., 2013, 39, p 6251–6263

    CAS  Google Scholar 

  51. M. Laurent-Brocq, L. Perrière, R. Pirès, G. Bracq, T. Rieger, Y. Danard, and I. Guillot, Combining Tensile Tests and Nanoindentation to Explore the Strengthening of High and Medium Entropy Alloys, Materialia, 2019, 7, p 100404

    Google Scholar 

  52. H. Li and A. Ngan, Size Effects of Nanoindentation Creep, J. Mater. Res., 2004, 19, p 513–522

    CAS  Google Scholar 

  53. Y.H. Chen, J.C. Huang, X.H. Du, and X. Wang, Time-Dependent Creep Behavior of Amorphous ZrCu and Nanocrystalline Zr Thin Films—A Comparison, Intermetallics, 2016, 68, p 101–106

    CAS  Google Scholar 

  54. Z. Ma, S. Long, Y. Pan, and Y. Zhou, Loading Rate Sensitivity of Nanoindentation Creep in Polycrystalline Ni Films, J. Mater. Sci., 2008, 43, p 5952–5955

    CAS  Google Scholar 

  55. X. Zhao, Q. Wei, B. Song, Y. Liu, X. Luo, S. Wen, and Y. Shi, Fabrication and Characterization of AISI, 420 Stainless Steel Using Selective Laser Melting, Mater. Manuf. Processes, 2015, 30, p 1283–1289

    CAS  Google Scholar 

  56. W. Fei and X. Kewei, An Investigation of Nanoindentation Creep in Polycrystalline Cu Thin Film, Mater. Lett., 2004, 58, p 2345–2349

    Google Scholar 

  57. P. Chowdhury, H. Sehitoglu, W. Abuzaid, and H.J. Maier, Mechanical Response of Low Stacking Fault Energy Co–Ni Alloys—Continuum, Mesoscopic and Atomic Level Treatments, Int. J. Plast., 2015, 71, p 32–61

    CAS  Google Scholar 

  58. B. Podgornik, V. Leskovšek, and J. Vižintin, Influence of Deep-Cryogenic Treatment on Tribological Properties of P/M High-Speed Steel, Mater. Manuf. Processes, 2009, 24, p 734–738

    CAS  Google Scholar 

  59. K. Gan, R. Gu, and A.H.W. Ngan, The Weakest Size of Precipitated Alloys in the Micro-regime: The Case of Duralumin, J. Mater. Res., 2017, 32, p 2003–2013

    CAS  Google Scholar 

Download references

Funding

This work was finance d by the Natural Science Foundation of Hunan province (Grant No. 2019JJ60062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kefu Gan.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Q., Gan, K. & Wang, Y. Effect of Heat Treatment on Microstructures and Mechanical Behaviors of 316L Stainless Steels Synthesized by Selective Laser Melting. J. of Materi Eng and Perform 30, 409–422 (2021). https://doi.org/10.1007/s11665-020-05330-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05330-7

Keywords

Navigation