Skip to main content
Log in

Corrosion Behavior of Brass H62 in Harsh Marine Atmosphere in Nansha Islands, China

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The corrosion behavior of brass H62 exposed to the atmosphere of Nansha Islands for 21 months was investigated by weight loss, scanning electron microscopy, x-ray diffraction and electrochemical techniques. The results showed that the average corrosion rate of brass H62 exposed for 1 year was approximately 13.47 g m−2 a−1, and the corrosion products were observed to be unevenly distributed, attributed to the dezincification corrosion. In addition to the zinc-containing compounds Zn5(OH)8Cl2·H2O and NaZn4(SO4)Cl(OH)6·6H2O, the copper-containing compounds Cu2O and Cu2Cl(OH)3 were also detected on the front side of the exposed sample, while only the zinc-containing compounds were detected on the back side. Both sides of brass H62 showed a decreasing corrosion rate, but the corrosion product layer on the back side appeared to be more protective for the same exposure time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. X.Y. Sun, Z.Y. Chen, J.R. Li, J. Hou, and L.K. Xu, Initial NaCl-Induced Atmospheric Corrosion of a Dual-Phase Cu60–40Zn Alloy—Effect of UV Illumination, Int. J. Electrochem. Sci., 2018, 13(8), p 8150–8169

    Article  CAS  Google Scholar 

  2. D. Qi, R. Cheng, X. Du, Y. Chen, Z. Zhang, and J. Zhang, Cu 及其合金的大气腐蚀研究现状 (Review on Atmospheric Corrosion of Copper and Copper Alloys), J. Chin. Soc. Corros. Prot., 2014, 34(5), p 389–398 ((in Chinese))

    CAS  Google Scholar 

  3. G.W. Kammlott, J.P. Franey, and T.E. Graedel, Atmospheric Sulfidation of Copper-Alloys. 1. Brasses and Bronzes, J. Electrochem. Soc., 1984, 131(3), p 505–511

    Article  CAS  Google Scholar 

  4. S. Goidanich, I.O. Wallinder, G. Herting, and C. Leygraf, Corrosion Induced Metal Release from Copper Based Alloys Compared to Their Pure Elements, Corros. Eng. Sci. Technol., 2008, 43(2), p 134–141

    Article  CAS  Google Scholar 

  5. J. Wu, X. Li, C. Dong, S. Zhang, and J. Zhou, 紫铜 T2 和黄铜 h62 在热带海洋大气环境中早期腐蚀行为 (Initial Corrosion Behavior of Copper and Brass in Tropical Maritime Atmospheric Environment), J. Chin. Soc. Corros. Prot., 2012, 32(1), p 70–74 ((in Chinese))

    Google Scholar 

  6. I.O. Wallinder, X. Zhang, S. Goidanich, N. Le Bozec, G. Herting, and C. Leygraf, Corrosion and Runoff Rates of Cu and Three Cu-Alloys in Marine Environments with Increasing Chloride Deposition Rate, Sci. Total Environ., 2014, 472, p 681–694

    Article  Google Scholar 

  7. Z. Cui, K. Xiao, C. Dong, Y. Ding, T. Wang, and X. Li, 西沙严酷海洋大气环境下紫铜和黄铜的腐蚀行为 (Corrosion Behavior of Copper and Brass in Serious Xisha Marine Atmosphere), Chin. J. Nonferrous Met., 2013, 23(3), p 742–749 ((in Chinese))

    Article  CAS  Google Scholar 

  8. X. Lu, Y.W. Liu, M.R. Liu, and Z.Y. Wang, Corrosion Behavior of Copper T2 and Brass H62 in Simulated Nansha Marine Atmosphere, J. Mater. Sci. Technol., 2019, 35(9), p 1831–1839

    Article  Google Scholar 

  9. B. Assouli, A. Srhiri, and H. Idrissi, Characterization and Control of Selective Corrosion of Alpha, Beta′-Brass by Acoustic Emission, NDT E Int., 2003, 36(2), p 117–126

    Article  CAS  Google Scholar 

  10. H. Sugawara and H. Ebiko, Dezincification of Brass, Corros. Sci., 1967, 7(8), p 513

    Article  CAS  Google Scholar 

  11. R.H. Heidersbach and E.D. Verink, Dezincification of Alpha and Beta Brasses, Corrosion, 1972, 28(11), p 397

    Article  CAS  Google Scholar 

  12. A.V. Polunin, A.P. Pchelnikov, V.V. Losev, and I.K. Marshakov, Electrochemical Studies of the Kinetics and Mechanism of Brass Dezincification, Electrochim. Acta, 1982, 27(4), p 467–475

    Article  CAS  Google Scholar 

  13. K.R. Trethewey and I. Pinwill, The Dezincification of Free-Machining Brasses in Sea-Water, Surf. Coat. Technol., 1987, 30(3), p 289–307

    Article  CAS  Google Scholar 

  14. E. Sarver, Y.F. Zhang, and M. Edwards, Review of Brass Dezincification Corrosion in Potable Water Systems, Corros. Rev., 2010, 28(3–4), p 155–196

    Article  CAS  Google Scholar 

  15. S. Goidanich, J. Brunk, G. Herting, M.A. Arenas, and I.O. Wallinder, Atmospheric Corrosion of Brass in Outdoor Applications Patina Evolution, Metal Release and Aesthetic Appearance at Urban Exposure Conditions, Sci. Total Environ., 2011, 412, p 46–57

    Article  Google Scholar 

  16. P. Zhou, M.J. Hutchison, J.W. Erning, J.R. Scully, and K. Ogle, An In Situ Kinetic Study of Brass Dezincification and Corrosion, Electrochim. Acta, 2017, 229, p 141–154

    Article  CAS  Google Scholar 

  17. C. Kleber and M. Schreiner, Multianalytical In Situ Investigations of the Early Stages of Corrosion of Copper, Zinc and Binary Copper/Zinc Alloys, Corros. Sci., 2003, 45(12), p 2851–2866

    Article  CAS  Google Scholar 

  18. Corrosion of Metals and Alloys—Corrosivity of Atmospheres—Guiding Values for the Corrosivity Categories, ISO 9224, ISO (2012)

  19. G.A. El-Mahdy, Electrochemical Impedance Study on Brass Corrosion in NaCl and (NH4)(2)SO4 Solutions during Cyclic Wet–Dry Conditions, J. Appl. Electrochem., 2005, 35(3), p 347–353

    Article  CAS  Google Scholar 

  20. F.M. Al-Kharafi, B.G. Ateya, and R.M. Abd Allah, Selective Dissolution of Brass in Salt Water, J. Appl. Electrochem., 2004, 34(1), p 47–53

    Article  CAS  Google Scholar 

  21. Corrosion of Metals and Alloys—Corrosivity of Atmospheres—Classification, Determination and Estimation, ISO 9223, ISO (2012)

  22. D.C. Kong, C.F. Dong, Y.H. Fang, K. Xiao, C.Y. Guo, G. He, and X.G. Li, Long-Term Corrosion of Copper in Hot and Dry Atmosphere in Turpan, China, J. Mater. Eng. Perform., 2016, 25(7), p 2977–2984

    Article  CAS  Google Scholar 

  23. D.C. Kong, C.F. Dong, X.Q. Ni, C. Man, K. Xiao, and X.G. Li, Insight into the Mechanism of Alloying Elements (Sn, Be) Effect on Copper Corrosion during Long-Term Degradation in Harsh Marine Environment, Appl. Surf. Sci., 2018, 455, p 543–553

    Article  CAS  Google Scholar 

  24. Y.M. Panchenko, A.I. Marshakov, T.N. Igonin, V.V. Kovtanyuk, and L.A. Nikolaeva, Long-Term Forecast of Corrosion Mass Losses of Technically Important Metals in Various World Regions Using a Power Function, Corros. Sci., 2014, 88, p 306–316

    Article  CAS  Google Scholar 

  25. L. Hao, S. Zhang, J. Dong, and W. Ke, A Study of the Evolution of Rust on Mo–Cu-Bearing Fire-Resistant Steel Submitted to Simulated Atmospheric Corrosion, Corros. Sci., 2012, 54, p 244–250

    Article  CAS  Google Scholar 

  26. R. Vera, R. Araya, M. Bagnara, A. Diaz-Gomez, and S. Ossandon, Atmospheric Corrosion of Copper Exposed to Different Environments in the Region of Valparaiso, Chile, Mater. Corros., 2017, 68(3), p 316–328

    Article  CAS  Google Scholar 

  27. C. Pan, W.Y. Ly, Z.Y. Wang, W. Su, C. Wang, and S.N. Liu, Atmospheric Corrosion of Copper Exposed in a Simulated Coastal-Industrial Atmosphere, J. Mater. Sci. Technol., 2017, 33(6), p 587–595

    Article  Google Scholar 

  28. C.N. Cao, Material Natural Environmental Corrosion of China, Chemical Industry Press, Beijing, 2005

    Google Scholar 

  29. H.T. Li, Z.Y. Chen, X.C. Liu, J. Hou, M.X. Sun, and R.C. Zeng, Study on the Mechanism of the Photoelectrochemical Effect on the Initial NaCl-Induced Atmospheric Corrosion Process of Pure Copper Exposed in Humidified Pure Air, J. Electrochem. Soc., 2018, 165(10), p C608–C617

    Article  CAS  Google Scholar 

  30. Y.L. Cheng, Z. Zhang, F.H. Cao, J.F. Li, J.Q. Zhang, J.M. Wang, and C.N. Cao, A Study of the Corrosion of Aluminum Alloy 2024-T3 under Thin Electrolyte Layers, Corros. Sci., 2004, 46(7), p 1649–1667

    Article  CAS  Google Scholar 

  31. F. King, M.J. Quinn, and C.D. Litke, Oxygen Reduction on Copper in Neutral NaCl Solution, J. Electroanal. Chem., 1995, 385(1), p 45–55

    Article  Google Scholar 

  32. X. Liao, F. Cao, L. Zheng, W. Liu, A. Chen, J. Zhang, and C. Cao, Corrosion Behaviour of Copper under Chloride-Containing Thin Electrolyte Layer, Corros. Sci., 2011, 53(10), p 3289–3298

    Article  CAS  Google Scholar 

  33. G. Zerjav and I. Milosev, Protection of Copper Against Corrosion in Simulated Urban Rain by the Combined Action of Benzotriazole, 2-Mercaptobenzimidazole and Stearic Acid, Corros. Sci., 2015, 98, p 180–191

    Article  CAS  Google Scholar 

  34. C. Pan, M. Guo, and Z. Wang, Effect of MgCl2 on the Corrosion Behavior of Copper under Periodic Wet/Dry Cycle Condition, J. Mater. Eng. Perform., 2019, 28(5), p 2562–2572

    Article  CAS  Google Scholar 

  35. W.J. Lorenz and F. Mansfeld, Determination of Corrosion Rates by Electrochemical DC and AC Methods, Corros. Sci., 1981, 21(9–10), p 647–672

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 51671197) and Strategic Priority Research Program of Chinese Academy of Sciences XDA (No. 13040502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyao Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Liu, Y., Zhao, H. et al. Corrosion Behavior of Brass H62 in Harsh Marine Atmosphere in Nansha Islands, China. J. of Materi Eng and Perform 29, 8156–8164 (2020). https://doi.org/10.1007/s11665-020-05287-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05287-7

Keywords

Navigation