Skip to main content
Log in

Microstructure and Compressive Behavior of Ti-6Al-4V Alloy Built by Electron Beam Free-Form Fabrication

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The paper presents the effect of layer deposition algorithms on the microstructure and the compressive behavior of the Ti-6Al-4V alloy built by the wire-feed electron beam free-form fabrication method. Patterns of the formation of pores and their shape changing under compressive loads were also investigated by computed tomography. The microstructure of the as-built samples consisted of columnar prior β grains with lengths of about several millimeters. Cross-sectional areas of the prior β grains did not depend from the metal cooling rate but were affected by the layer deposition algorithms. They were smaller and characterized by a wider range of the values when odd and even layers had been deposited perpendicular to each other. In this case, the prior β grains included predominantly the basket-weave Widmanstätten microstructure, while the α, α′, and residual β phases with different volume ratios presented after the parallel layer-by-layer deposition. The only reason for this feature could be the substrate surface conditions (waviness across the deposition path). The compression test results corresponded to the formed microstructure. The sample with the maximum amount of the martensitic α′ phase possessed the highest strength and the lowest ductility. On the contrary, the prevailed basket-weave Widmanstätten microstructure resulted in the improved toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Welsch, R. Boyer, and E.W. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, Metals Park, 1994

    Google Scholar 

  2. P. Edwards, A. O’Conner, and M. Ramulu, Electron Beam Additive Manufacturing of Titanium Components: Properties and Performance, J. Manuf. Sci. Eng. Trans. ASME, 2013, 135(6), p 061016. https://doi.org/10.1115/1.4025773

    Article  Google Scholar 

  3. D. Banerjee and J.C. Williams, Perspectives on Titanium Science and Technology, Acta Mater., 2013, 61(3), p 844–879. https://doi.org/10.1016/j.actamat.2012.10.043

    Article  CAS  Google Scholar 

  4. X. Gong, T. Anderson, and K. Chou, Review on Powder-Based Electron Beam Additive Manufacturing Technology, Manufact. Rev., 2014, 1, p 2. https://doi.org/10.1051/mfreview/2014001

    Article  CAS  Google Scholar 

  5. L.E. Murr, Metallurgy of Additive Manufacturing: Examples from Electron Beam Melting, Addit. Manuf., 2015, 5, p 40–53. https://doi.org/10.1016/j.addma.2014.12.002

    Article  CAS  Google Scholar 

  6. S. Gorsse, C. Hutchinson, M. Gouné, and R. Banerjee, Additive Manufacturing of Metals: A Brief Review of the Characteristic Microstructures and Properties of Steels. Ti-6Al-4V and High-Entropy Alloys, Sci. Technol. Adv. Mater., 2017, 18(1), p 584–610. https://doi.org/10.1080/14686996.2017.1361305

    Article  CAS  Google Scholar 

  7. Y. Zhang, L. Wu, X. Guo, S. Kane, Y. Deng, Y.-G. Jung, J.-H. Lee, and J. Zhang, Additive Manufacturing of Metallic Materials: A Review, J. Mater. Eng. Perform., 2018, 27, p 1–13. https://doi.org/10.1007/s11665-017-2747-y

    Article  CAS  Google Scholar 

  8. F. Cao, T. Zhang, M.A. Ryder, and D.A. Lados, A Review of the Fatigue Properties of Additively Manufactured Ti-6Al-4V, JOM, 2018, 70(3), p 349–357. https://doi.org/10.1007/s11837-017-2728-5

    Article  CAS  Google Scholar 

  9. L.-C. Zhang and L.-Y. Chen, A Review on Biomedical Titanium Alloys: Recent Progress and Prospect, Adv. Eng. Mater., 2019, 21(4), p 1801215. https://doi.org/10.1002/adem.201801215

    Article  CAS  Google Scholar 

  10. A. Paolini, S. Kollmannsberger, and E. Rank, Additive Manufacturing in Construction: A Review on Processes, Applications, and Digital Planning Methods, Addit. Manuf., 2019, 30, p 100894. https://doi.org/10.1016/j.addma.2019.100894

    Article  Google Scholar 

  11. A.H. Chern, P. Nandwana, T. Yuan, M.M. Kirka, R.R. Dehoff, P.K. Liaw, and C.E. Duty, A Review on the Fatigue Behavior of Ti-6Al-4V Fabricated by Electron Beam Melting Additive Manufacturing, Int. J. Fatigue, 2019, 119, p 173–184. https://doi.org/10.1016/j.ijfatigue.2018.09.022

    Article  CAS  Google Scholar 

  12. S. Liu and Y.C. Shin, Additive Manufacturing of Ti6Al4V Alloy: A Review, Mater. Des., 2019, 164, p 107552. https://doi.org/10.1016/j.matdes.2018.107552

    Article  CAS  Google Scholar 

  13. N. Chekir, J.J. Sixsmith, R. Tollett, and M. Brochu, Laser Wire Deposition of a Large Ti-6Al-4V Space Component, Weld. J., 2019, 98(6), p 172s–180s. https://doi.org/10.29391/2019.98.014

    Article  Google Scholar 

  14. J. Zhang, X. Wang, S. Paddea, and X. Zhang, Fatigue Crack Propagation Behaviour in Wire + Arc Additive Manufactured Ti-6Al-4V: Effects of Microstructure and Residual Stress, Mater. Des., 2016, 90, p 551–561. https://doi.org/10.1016/j.matdes.2015.10.141

    Article  CAS  Google Scholar 

  15. F. Martina, M.J. Roy, B.A. Szost, S. Terzi, P.A. Colegrove, S.W. Williams, P.J. Withers, J. Meyer, and M. Hofmann, Residual Stress of As-Deposited and Rolled Wire + Arc Additive Manufacturing Ti-6Al-4V Components, Mater. Sci. Technol., 2016, 32(1), p 1439–1448. https://doi.org/10.1080/02670836.2016.1142704

    Article  CAS  Google Scholar 

  16. J. Donoghue, A.A. Antonysamy, F. Martina, P.A. Colegrove, S.W. Williams, and P.B. Prangnell, The Effectiveness of Combining Rolling Deformation with Wire-Arc Additive Manufacture on β-Grain Refinement and Texture Modification in Ti-6Al-4V, Mater. Charact., 2016, 114, p 103–114. https://doi.org/10.1016/j.matchar.2016.02.001

    Article  CAS  Google Scholar 

  17. J.R. Hönnige, P. Colegrove, and S. Williams, Improvement of Microstructure and Mechanical Properties in Wire + Arc Additively Manufactured Ti-6Al-4V with Machine Hammer Peening, Procedia Eng., 2017, 216, p 8–17. https://doi.org/10.1016/j.proeng.2018.02.083

    Article  CAS  Google Scholar 

  18. A.R. McAndrew, M.A. Rosales, P.A. Colegrove, J.R. Hönnige, A. Ho, R. Fayolle, K. Eyitayo, I. Stan, P. Sukrongpang, A. Crochemore, and Z. Pinter, Interpass Rolling of Ti-6Al-4V Wire + Arc Additively Manufactured Features for Microstructural Refinement, Addit. Manuf., 2018, 21, p 340–349. https://doi.org/10.1016/j.addma.2018.03.006

    Article  CAS  Google Scholar 

  19. B. Wu, Z. Pan, G. Chen, D. Ding, L. Yuan, D. Cuiuri, and H. Li, Mitigation of Thermal Distortion in Wire Arc Additively Manufactured Ti6Al4V Part Using Active Interpass Cooling, Sci. Technol. Weld. Join., 2019, 24(5), p 484–494. https://doi.org/10.1080/13621718.2019.1580439

    Article  CAS  Google Scholar 

  20. R. Biswal, X. Zhang, M. Shamir, A.A. Mamun, M. Awd, F. Walther, and A.K. Syed, Interrupted Fatigue Testing with Periodic Tomography to Monitor Porosity Defects in Wire + Arc Additive Manufactured Ti-6Al-4V, Addit. Manuf., 2019, 28, p 517–527. https://doi.org/10.1016/j.addma.2019.04.026

    Article  CAS  Google Scholar 

  21. F. Martina, J. Mehnen, S.W. Williams, P. Colegrove, and F. Wang, Investigation of the Benefits of Plasma Deposition for the Additive Layer Manufacture of Ti-6Al-4V, J. Mater. Process. Technol., 2012, 212, p 1377–1386. https://doi.org/10.1016/j.jmatprotec.2012.02.002

    Article  CAS  Google Scholar 

  22. J. Lin, Y. Lv, Y. Liu, Z. Sun, K. Wang, Z. Li, Y. Wu, and B. Xu, Microstructural Evolution and Mechanical Property of Ti-6Al-4V Wall Deposited by Continuous Plasma Arc Additive Manufacturing Without Post Heat Treatment, J. Mech. Behav. Biomed. Mater., 2017, 69, p 19–29. https://doi.org/10.1016/j.jmbbm.2016.12.015

    Article  CAS  Google Scholar 

  23. J. Lin, Y. Lv, D. Guo, X. Wu, Z. Li, C. Liu, B. Guo, G. Xu, and B. Xu, Enhanced Strength and Ductility in Thin Ti-6Al-4V Alloy Components by Alternating the Thermal Cycle Strategy during Plasma Arc Additive Manufacturing, Mater. Sci. Eng. A, 2019, 759, p 288–297. https://doi.org/10.1016/j.msea.2019.05.025

    Article  CAS  Google Scholar 

  24. E. Brandl, V. Michailov, B. Viehweger, and C. Leyens, Deposition of Ti-6Al-4V Using Laser and Wire, Part I: Microstructural Properties of Single Beads, Surf. Coat. Technol., 2011, 206, p 1120–1129. https://doi.org/10.1016/j.surfcoat.2011.07.095

    Article  CAS  Google Scholar 

  25. E. Brandl, V. Michailov, B. Viehweger, and C. Leyens, Deposition of Ti-6Al-4V Using Laser and Wire, Part II: Hardness and Dimensions of Single Beads, Surf. Coat. Technol., 2011, 206, p 1130–1141. https://doi.org/10.1016/j.surfcoat.2011.07.094

    Article  CAS  Google Scholar 

  26. E. Brandl, F. Palm, V. Michailov, B. Viehweger, and C. Leyens, Mechanical Properties of Additive Manufactured Titanium (Ti-6Al-4V) Blocks Deposited by a Solid-State Laser and Wire, Mater. Des., 2011, 32, p 4665–4675. https://doi.org/10.1016/j.matdes.2011.06.062

    Article  CAS  Google Scholar 

  27. P. Wanjara, K. Watanabe, C. de Formanoir, Q. Yang, C. Bescond, S. Godet, M. Brochu, K. Nezaki, J. Gholipour, and P. Patnaik, Titanium Alloy Repair with Wire-Feed Electron Beam Additive Manufacturing Technology, Adv. Mater. Sci. Eng., 2019, https://doi.org/10.1155/2019/3979471

    Article  Google Scholar 

  28. A. Panin, M. Kazachenok, O. Perevalova, S. Martynov, A. Panina, and E. Sklyarova, Continuous Electron Beam Post-Treatment of EBF3-Fabricated Ti-6Al-4V Parts, Metals, 2019, 9(6), p 699. https://doi.org/10.3390/met9060699

    Article  CAS  Google Scholar 

  29. B.E. Carroll, T.A. Palmera, and A.M. Beese, Anisotropic Tensile Behavior of Ti-6Al-4V Components Fabricated with Directed Energy Deposition Additive Manufacturing, Acta Mater., 2015, 87, p 309–320. https://doi.org/10.1016/j.actamat.2014.12.054

    Article  CAS  Google Scholar 

  30. A. Sterling, N. Shamsaei, B. Torries, and S.M. Thompson, Fatigue Behaviour of Additively Manufactured Ti-6Al-4V, Procedia Eng., 2015, 133, p 576–589. https://doi.org/10.1016/j.proeng.2015.12.632

    Article  CAS  Google Scholar 

  31. L. Bian, S.M. Thompson, and N. Shamsaei, Mechanical Properties and Microstructural Features of Direct Laser-Deposited Ti-6Al-4V, JOM, 2015, 67(3), p 629–638. https://doi.org/10.1007/s11837-015-1308-9

    Article  CAS  Google Scholar 

  32. J. Günther, D. Krewerth, T. Lippmann, S. Leuders, T. Tröster, A. Weidner, H. Biermann, and T. Niendorf, Fatigue Life of Additively Manufactured Ti-6Al-4V in the Very High Cycle Fatigue Regime, Int. J. Fatigue, 2017, 94, p 236–245. https://doi.org/10.1016/j.ijfatigue.2016.05.018

    Article  CAS  Google Scholar 

  33. M.-W. Wu, J.-K. Chen, B.-H. Lin, and P.-H. Chiang, Improved Fatigue Endurance Ratio of Additive Manufactured Ti-6Al-4V Lattice by Hot Isostatic Pressing, Mater. Des., 2017, 134, p 163–170. https://doi.org/10.1016/j.matdes.2017.08.048

    Article  CAS  Google Scholar 

  34. A. Fatemi, R. Molaei, S. Sharifimehr, N. Phan, and N. Shamsaei, Multiaxial Fatigue Behavior of Wrought and Additive Manufactured Ti-6Al-4V Including Surface Finish Effect, Int. J. Fatigue, 2017, 100, p 347–366. https://doi.org/10.1016/j.ijfatigue.2017.03.044

    Article  CAS  Google Scholar 

  35. A.E. Wilson-Heid, Z. Wang, B. McCornac, and A.M. Beese, Quantitative Relationship Between Anisotropic Strain to Failure and Grain Morphology in Additively Manufactured Ti-6Al-4V, Mater. Sci. Eng. A, 2017, 706, p 287–294. https://doi.org/10.1016/j.msea.2017.09.017

    Article  CAS  Google Scholar 

  36. A. Fatemi, R. Molaei, S. Sharifimehr, N. Shamsaei, and N. Phan, Torsional Fatigue Behavior of Wrought and Additive Manufactured Ti-6Al-4V by Powder Bed Fusion Including Surface Finish Effect, Int. J. Fatigue, 2017, 99, p 187–201. https://doi.org/10.1016/j.ijfatigue.2017.03.002

    Article  CAS  Google Scholar 

  37. R. Molaei, A. Fatemi, and N. Phan, Significance of Hot Isostatic Pressing (HIP) on Multiaxial Deformation and Fatigue Behaviors of Additive Manufactured Ti-6Al-4V Including Build Orientation and Surface Roughness Effects, Int. J. Fatigue, 2018, 117, p 352–370. https://doi.org/10.1016/j.ijfatigue.2018.07.035

    Article  CAS  Google Scholar 

  38. A. Azarniya, X.G. Colera, M.J. Mirzaali, S. Sovizi, F. Bartolomeu, M.S. Weglowski, W.W. Wits, C.Y. Yap, J. Ahn, G. Miranda, F.S. Silva, H.R.M. Hosseini, S. Ramakrishna, and A.A. Zadpoor, Additive Manufacturing of Ti-6Al-4V Parts through Laser Metal Deposition (LMD): Process, Microstructure, and Mechanical Properties, J. Alloys Compd., 2019, 804, p 163–191. https://doi.org/10.1016/j.jallcom.2019.04.255

    Article  CAS  Google Scholar 

  39. N. Sanaei, A. Fatemi, and N. Phan, Defect Characteristics and Analysis of Their Variability in Metal L-PBF Additive Manufacturing, Mater. Des., 2019, 182, p 108091. https://doi.org/10.1016/j.matdes.2019.108091

    Article  Google Scholar 

  40. N.A. Kistler, D.J. Corbin, A.R. Nassar, E.W. Reutzel, and A.M. Beese, Effect of Processing Conditions on the Microstructure, Porosity, and Mechanical Properties of Ti-6Al-4V Repair Fabricated by Directed Energy Deposition, J. Mater. Process. Technol., 2019, 264, p 172–181. https://doi.org/10.1016/j.jmatprotec.2018.08.041

    Article  CAS  Google Scholar 

  41. Y. Zhai, H. Galarraga, and D.A. Lados, Microstructure, Static Properties, and Fatigue Crack Growth Mechanisms in Ti-6Al-4V Fabricated by Additive Manufacturing: LENS and EBM, Eng. Fail. Anal., 2016, 69, p 3–14. https://doi.org/10.1016/j.engfailanal.2016.05.036

    Article  CAS  Google Scholar 

  42. V. Chastand, P. Quaegebeur, W. Maia, and E. Charkaluk, Comparative Study of Fatigue Properties of Ti-6Al-4V Specimens Built by Electron Beam Melting (EBM) and Selective Laser Melting (SLM), Mater. Charact., 2018, 143, p 76–81. https://doi.org/10.1016/j.matchar.2018.03.028

    Article  CAS  Google Scholar 

  43. B. Tavlovich, A. Shirizly, and R. Katz, EBW and LBW of Additive Manufactured Ti6Al4V Products, Weld. J., 2018, 97(6), p 179s–190s. https://doi.org/10.29391/2018.97.016

    Article  CAS  Google Scholar 

  44. X.-Y. Zhang, G. Fang, S. Leeflang, A.J. Bottger, A.A. Zadpoor, and J. Zhou, Effect of Subtransus Heat Treatment on the Microstructure and Mechanical Properties of Additively Manufactured Ti-6Al-4V Alloy, J. Alloys Compd., 2018, 735, p 1562–1575. https://doi.org/10.1016/j.jallcom.2017.11.263

    Article  CAS  Google Scholar 

  45. M. Neikter, P. Åkerfeldt, R. Pederson, M.-L. Antti, and V. Sandell, Microstructural Characterization and Comparison of Ti-6Al-4V Manufactured with Different Additive Manufacturing Processes, Mater. Charact., 2018, 143, p 68–75. https://doi.org/10.1016/j.matchar.2018.02.003

    Article  CAS  Google Scholar 

  46. L. Xiao, W. Song, M. Hu, and P. Li, Compressive Properties and Micro-structural Characteristics of Ti-6Al-4V Fabricated by Electron Beam Melting and Selective Laser Melting, Mater. Sci. Eng. A, 2019, 764, p 138204. https://doi.org/10.1016/j.msea.2019.138204

    Article  CAS  Google Scholar 

  47. M. Qian, W. Xu, M. Brandt, and H.P. Tang, Additive Manufacturing and Post Processing of Ti-6Al-4V for Superior Mechanical Properties, MRS Bull., 2016, 41, p 775–783. https://doi.org/10.1557/mrs.2016.215

    Article  CAS  Google Scholar 

  48. H. Galarraga, D.A. Lados, R.R. Dehoff, M.M. Kirka, and P. Nandwana, Effects of the Microstructure and Porosity on Properties of Ti-6Al-4V ELI, Alloy Fabricated by Electron Beam Melting (EBM), Addit. Manuf., 2016, 10, p 47–57. https://doi.org/10.1016/j.addma.2016.02.003

    Article  CAS  Google Scholar 

  49. J. Cao, M.A. Gharghouri, and P. Nash, Finite-Element Analysis and Experimental Validation of Thermal Residual Stress and Distortion in Electron Beam Additive Manufactured Ti-6Al-4V Build Plates, J. Mater. Process. Technol., 2016, 237, p 409–419. https://doi.org/10.1016/j.jmatprotec.2016.06.032

    Article  CAS  Google Scholar 

  50. H. Galarraga, R.J. Warren, D.A. Lados, R.R. Dehoff, M.M. Kirka, and P. Nandwana, Effects of Heat Treatments on Microstructure and Properties of Ti-6Al-4V ELI, Alloy Fabricated by Electron Beam Melting (EBM), Mater. Sci. Eng. A, 2017, 685, p 417–428. https://doi.org/10.1016/j.msea.2017.01.019

    Article  CAS  Google Scholar 

  51. X. Shui, K. Yamanaka, M. Mori, Y. Nagata, K. Kurita, and A. Chiba, Effects of Post-Processing on Cyclic Fatigue Response of a Titanium Alloy Additively Manufactured by Electron Beam Melting, Mater. Sci. Eng. A, 2017, 680, p 239–248. https://doi.org/10.1016/j.msea.2016.10.059

    Article  CAS  Google Scholar 

  52. H. Galarraga, R.J. Warren, D.A. Lados, R.R. Dehoff, and M.M. Kirka, Fatigue Crack Growth Mechanisms at the Microstructure Scale in As-Fabricated and Heat Treated Ti-6Al-4V ELI, Manufactured by Electron Beam Melting (EBM), Eng. Fract. Mech., 2017, 176, p 263–280. https://doi.org/10.1016/j.engfracmech.2017.03.024

    Article  Google Scholar 

  53. O.L. Rodriguez, P.G. Allison, W.R. Whittington, H.E. Kadiri, O.G. Riverad, and M.E. Barkey, Strain Rate Effect on the Tension and Compression Stress-State Asymmetry for Electron Beam Additive Manufactured Ti6Al4V, Mater. Sci. Eng. A, 2018, 713, p 125–133. https://doi.org/10.1016/j.msea.2017.12.062

    Article  CAS  Google Scholar 

  54. J. Elambasseril, S.L. Lub, Y.P. Ning, N. Liu, J. Wang, M. Brandt, H.P. Tang, and M. Qian, 3D Characterization of Defects in Deep-Powder-Bed Manufactured Ti-6Al-4V and Their Influence on Tensile Properties, Mater. Sci. Eng. A, 2019, 761, p 138031. https://doi.org/10.1016/j.msea.2019.138031

    Article  CAS  Google Scholar 

  55. H. Sharma, D. Parfitt, A.K. Syed, D. Wimpenny, E. Muzangaza, G. Baxter, and B. Chen, A Critical Evaluation of the Microstructural Gradient Along the Build Direction in Electron Beam Melted Ti-6Al-4V Alloy, Mater. Sci. Eng. A, 2019, 744, p 182–194. https://doi.org/10.1016/j.msea.2018.12.016

    Article  CAS  Google Scholar 

  56. S.N.M. Jenkins, T.H. Oulton, E. Hernandez-Nava, H. Ghadbeigi, I. Todd, and R. Goodall, Anisotropy in the Mechanical Behavior of Ti6Al4V Electron Beam Melted Lattices, Mech. Res. Commun., 2019, 100, p 103400. https://doi.org/10.1016/j.mechrescom.2019.103400

    Article  Google Scholar 

  57. T. Persenot, A. Burr, G. Martin, J.-Y. Buffiere, R. Dendievel, and E. Maire, Effect of Build Orientation on the Fatigue Properties of As-Built Electron Beam Melted Ti-6Al-4V Alloy, Int. J. Fatigue, 2019, 118, p 65–76. https://doi.org/10.1016/j.ijfatigue.2018.08.006

    Article  CAS  Google Scholar 

  58. N. Hrabe, R. White, and E. Lucon, Effects of Internal Porosity and Crystallographic Texture on Charpy Absorbed Energy of Electron Beam Melting Titanium Alloy (Ti-6Al-4V), Mater. Sci. Eng. A, 2019, 742, p 269–277. https://doi.org/10.1016/j.msea.2018.11.005

    Article  CAS  Google Scholar 

  59. J. Xu, J. Zhu, J. Fan, Q. Zhou, Y. Peng, and S. Guo, Microstructure and Mechanical Properties of Ti-6Al-4V Alloy Fabricated Using Electron Beam Freeform Fabrication, Vacuum, 2019, 167, p 364–373. https://doi.org/10.1016/j.vacuum.2019.06.030

    Article  CAS  Google Scholar 

  60. M. Wang, H.Q. Li, D.J. Lou, C.X. Qin, J. Jiang, X.Y. Fang, and Y.B. Guo, Microstructure Anisotropy and Its Implication in Mechanical Properties of Biomedical Titanium Alloy Processed by Electron Beam Melting, Mater. Sci. Eng. A, 2019, 743, p 123–137. https://doi.org/10.1016/j.msea.2018.11.038

    Article  CAS  Google Scholar 

  61. X. Shi, S. Ma, C. Liu, Q. Wu, J. Lu, Y. Liu, and W. Shi, Selective Laser Melting-Wire Arc Additive Manufacturing Hybrid Fabrication of Ti-6Al-4V Alloy: Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2017, 684, p 196–204. https://doi.org/10.1016/j.msea.2016.12.065

    Article  CAS  Google Scholar 

  62. D. Ding, Z. Pan, D. Cuiuri, and H. Li, Wire-Feed Additive Manufacturing of Metal Components: Technologies, Developments and Future Interests, Int. J. Adv. Manuf. Technol., 2015, 81, p 465–481. https://doi.org/10.1007/s00170-015-7077-3

    Article  Google Scholar 

  63. J.W. Elmer, J. Vaja, J.S. Carpenter, D.R. Coughlin, M.J. Dvornak, P. Hochanadel, P. Gurung, A. Johnson, and G. Gibbs, Wire-Based Additive Manufacturing of Stainless Steel Components, Weld. J., 2020, 99(1), p 8S–24S. https://doi.org/10.29391/2020.99.002

    Article  Google Scholar 

  64. V.V. Fedorov, V.A. Klimenov, A.V. Batranin, and R. Pardeep, Development of Electron-Beam Equipment and Technology of Layer-Wise Welding of a Wire by Additive Technologies, AIP Conf. Proc., 2019, 2167, p 020097. https://doi.org/10.1063/1.5131964

    Article  CAS  Google Scholar 

  65. V.A. Klimenov, Z.G. Kovalevskaya, A.Y. Eroshenko, and D.V. Gubarkov, Examination of the Thermal Effect of an Electron Beam on a Coating-Substrate Composite, Weld. Int., 2002, 16(11), p 899–902. https://doi.org/10.1080/09507110209549634

    Article  Google Scholar 

  66. N.S. Pushilina, V.A. Klimenov, R.O. Cherepanov, E.B. Kashkarov, V.V. Fedorov, M.S. Syrtanov, A.M. Lider, and R.S. Laptev, Beam Current Effect on Microstructure and Properties of Electron-Beam-Melted Ti-6Al-4V Alloy, J. Mater. Eng. Perform., 2019, 28(10), p 6165–6173. https://doi.org/10.1007/s11665-019-04344-0

    Article  CAS  Google Scholar 

  67. P. Li, D.H. Warner, A. Fatemi, and N. Phan, Critical Assessment of the Fatigue Performance of Additively Manufactured Ti-6Al-4V and Perspective for Future Research, Int. J. Fatigue, 2016, 85, p 130–143. https://doi.org/10.1016/j.ijfatigue.2015.12.003

    Article  CAS  Google Scholar 

  68. E.W. Collings, The Physical Metallurgy of Titanium Alloys, American Society for Metals, Metals Park, 1984

    Google Scholar 

  69. A.A. Il’in, B.A. Kolachev, and I.S. Pol’kin, Titanium Alloys: Composition, Structure, Properties, VILS-MATI, Moscow, 2009 ((in Russian))

    Google Scholar 

  70. J. Li, X. Zhou, M. Brochu, N. Provatas, and Y.F. Zhao, Solidification Microstructure Simulation of Ti-6Al-4V in Metal Additive Manufacturing: A Review, Addit. Manuf., 2020, 31, p 100989. https://doi.org/10.1016/j.addma.2019.100989

    Article  CAS  Google Scholar 

  71. F.H. Froes, Ed., Titanium. Physical Metallurgy, Processing and Applications, ASM International, Materials Park, 2015

    Google Scholar 

  72. B. Baufeld, E. Brandl, and O. van der Biest, Wire Based Additive Layer Manufacturing: Comparison of Microstructure and Mechanical Properties of Ti-6Al-4V Components Fabricated by Laser-Beam Deposition and Shaped Metal Deposition, J. Mater. Process. Technol., 2011, 211, p 1146–1158. https://doi.org/10.1016/j.jmatprotec.2011.01.018

    Article  CAS  Google Scholar 

  73. E. Brandl, A. Schoberth, and C. Leyens, Morphology, Microstructure, and Hardness of Titanium (Ti-6Al-4V) Blocks Deposited by Wire-Feed Additive Layer Manufacturing (ALM), Mater. Sci. Eng. A, 2012, 532, p 295–307. https://doi.org/10.1016/j.msea.2011.10.095

    Article  CAS  Google Scholar 

  74. G. Del Guercio, M. Galati, A. Saboori, P. Fino, and L. Iuliano, Microstructure and Mechanical Performance of Ti-6Al-4V Lattice Structures Manufactured Via Electron Beam Melting (EBM): A Review, Acta Metall. Sin., 2020, 33(2), p 183–203. https://doi.org/10.1007/s40195-020-00998-1

    Article  CAS  Google Scholar 

  75. A. du Plessis, I. Yadroitsava, and I. Yadroitsev, Effects of Defects on Mechanical Properties in Metal Additive Manufacturing: A Review Focusing on X-ray Tomography Insights, Mater. Des., 2020, 187, p 108385. https://doi.org/10.1016/j.matdes.2019.108385

    Article  CAS  Google Scholar 

  76. A. Fatemi, R. Molaeia, and N. Phan, Multiaxial Fatigue of Additive Manufactured Metals: Performance, Analysis, and Applications, Int. J. Fatigue, 2020, 134, p 105479. https://doi.org/10.1016/j.ijfatigue.2020.105479

    Article  CAS  Google Scholar 

  77. B. Bandi, S.K. Dinda, J. Kar, G.G. Roy, and P. Srirangam, Effect of Weld Parameters on Porosity Formation in Electron Beam Welded Zircaloy-4 Joints: X-ray Tomography Study, Vacuum, 2018, 158, p 172–179. https://doi.org/10.1016/j.vacuum.2018.09.060

    Article  CAS  Google Scholar 

  78. J.J.S. Dilip, S. Zhang, C. Teng, K. Zeng, C. Robinson, D. Pal, and B. Stucker, Influence of Processing Parameters on the Evolution of Melt Pool, Porosity, and Microstructures in Ti-6Al-4V Alloy Parts Fabricated by Selective Laser Melting, Prog. Addit. Manuf., 2017, 2(3), p 157–167. https://doi.org/10.1007/s40964-017-0030-2

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the Russian Science Foundation (Project No. 18-79-10049) and Program for Basic Scientific Research at the State Academies of Sciences for 2013–2020 (Project No. 23.2.1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail S. Slobodyan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimenov, V.A., Fedorov, V.V., Slobodyan, M.S. et al. Microstructure and Compressive Behavior of Ti-6Al-4V Alloy Built by Electron Beam Free-Form Fabrication. J. of Materi Eng and Perform 29, 7710–7721 (2020). https://doi.org/10.1007/s11665-020-05223-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05223-9

Keywords

Navigation