Skip to main content
Log in

Sintering and Thermal Shock Behavior of Yttria-Stabilized Zirconia Coating Deposited by Electrophoretic Method On Inconel 738LC Superalloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this study, the MCrAlY bond coat was deposited on Inconel 738LC using the atmospheric plasma spraying method. Then, the 3 mol% yttria-stabilized zirconia nanoparticles were coated on the material using the electrophoretic deposition method at 50 V for 3 min. subsequently the samples were sintered for 2 h at 900, 1000, 1100, and 1200 °C. The results revealed that the adhesion of the topcoat was improved by introducing proper roughness on the substrate surface. Also, the sintering temperature of 1000 °C was found to be optimal, providing the heat for the surface melting, necking formation, and particle binding. The sample did withstand up to 118 thermal cycles. The cracks were initiated from the sample edges and propagated through the coating. The nucleation and growth of the cracks were primarily due to the difference in the coefficient of thermal expansion (CTE) of the metallic and ceramic layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z. Mazur, A. Luna-Ramírez, J.A. Juárez-Islas, A. Campos-Amezcua, Failure analysis of a gas turbine blade made of Inconel 738LC alloy, Eng. Fail. Anal. 12 (2005) 474–486. https://doi.org/10.1016/j.engfailanal.2004.10.002.

    Article  CAS  Google Scholar 

  2. X.Q. Cao, R. Vassen, D. Stoever, Ceramic materials for thermal barrier coatings, J. Eur. Ceram. Soc. 24 (2004) 1–10. https://doi.org/10.1016/S0955-2219(03)00129-8.

    Article  CAS  Google Scholar 

  3. S. Rani, A.K. Agrawal, V. Rastogi, Failure analysis of a first stage IN738 gas turbine blade tip cracking in a thermal power plant, Case Stud. Eng. Fail. Anal. 8 (2017) 1–10. https://doi.org/10.1016/J.CSEFA.2016.11.002.

    Article  Google Scholar 

  4. M.J. Pomeroy, Coatings for gas turbine materials and long term stability issues, Mater. Des. 26 (2005) 223–231. https://doi.org/10.1016/j.matdes.2004.02.005.

    Article  CAS  Google Scholar 

  5. J. Wang, J. Sun, H. Zhang, S. Dong, J. Jiang, L. Deng, X. Zhou, X. Cao, Effect of spraying power on microstructure and property of nanostructured YSZ thermal barrier coatings, J. Alloys Compd. 730 (2018) 471–482. https://doi.org/10.1016/j.jallcom.2017.09.323.

    Article  CAS  Google Scholar 

  6. A.H. Pakseresht, A.H. Javadi, M. Bahrami, F. Khodabakhshi, A. Simchi, Spark plasma sintering of a multilayer thermal barrier coating on Inconel 738 superalloy: Microstructural development and hot corrosion behavior, Ceram. Int. 42 (2016) 2770–2779. https://doi.org/10.1016/j.ceramint.2015.11.008.

    Article  CAS  Google Scholar 

  7. J.L. Pantoja-Pertegal, A. Díaz-Parralejo, A. Macías-García, J. Sánchez-González, E.M. Cuerda-Correa, Design, preparation, and characterization of Yttria-Stabilized Zirconia (YSZ) coatings obtained by electrophoretic deposition (EPD), Ceram. Int. 47 (2021) 13312–13321. https://doi.org/10.1016/j.ceramint.2020.12.279.

    Article  CAS  Google Scholar 

  8. A.C. Karaoglanli, E. Altuncu, I. Ozdemir, A. Turk, F. Ustel, Structure and durability evaluation of YSZ + Al2O3 composite TBCs with APS and HVOF bond coats under thermal cycling conditions, Surf. Coatings Technol. 205 (2011) S369–S373. https://doi.org/10.1016/J.SURFCOAT.2011.04.081.

    Article  CAS  Google Scholar 

  9. R. Kumar, D. Cietek, C. Jiang, J. Roth, M. Gell, E.H. Jordan, Influence of microstructure on the durability of gadolinium zirconate thermal barrier coatings using APS & SPPS processes, Surf. Coatings Technol. 337 (2018) 117–125. https://doi.org/10.1016/j.surfcoat.2018.01.004.

    Article  CAS  Google Scholar 

  10. Y. Zhao, Stability of phase boundary between L12-Ni3Al phases: A phase field study, Intermetallics. 144 (2022) 107528. https://doi.org/10.1016/j.intermet.2022.107528.

    Article  CAS  Google Scholar 

  11. H. Wang, J. Xie, Y. Chen, W. Liu, W. Zhong, Effect of CoCrFeNiMn high entropy alloy interlayer on microstructure and mechanical properties of laser-welded NiTi/304 SS joint, J. Mater. Res. Technol. 18 (2022) 1028–1037. https://doi.org/10.1016/j.jmrt.2022.03.022.

    Article  CAS  Google Scholar 

  12. M. Ahmadi, H. Aghajani, Suspension characterization and electrophoretic deposition of Yttria-stabilized Zirconia nanoparticles on an iron-nickel based superalloy, Ceram. Int. 43 (2017) 7321–7328. https://doi.org/10.1016/j.ceramint.2017.03.035.

    Article  CAS  Google Scholar 

  13. H. Maleki-Ghaleh, M. Rekabeslami, M.S. Shakeri, M.H. Siadati, M. Javidi, S.H. Talebian, H. Aghajani, Nano-structured yttria-stabilized zirconia coating by electrophoretic deposition, Appl. Surf. Sci. 280 (2013) 666–672. https://doi.org/10.1016/j.apsusc.2013.04.173.

    Article  CAS  Google Scholar 

  14. O. Khanali, M. Rajabi, S. Baghshahi, S. Ariaee, Suspension medium’s impact on the EPD of nano-YSZ on Fecralloy, Surf. Eng. 33 (2017) 310–318. https://doi.org/10.1080/02670844.2016.1259730.

    Article  CAS  Google Scholar 

  15. L. Besra, M. Liu, A review on fundamentals and applications of electrophoretic deposition (EPD), Prog. Mater. Sci. 52 (2007) 1–61. https://doi.org/10.1016/j.pmatsci.2006.07.001.

    Article  CAS  Google Scholar 

  16. K. Zhou, J. Xu, G. Xiao, Y. Huang, A novel low-damage and low-abrasive wear processing method of Cf/SiC ceramic matrix composites: Laser-induced ablation-assisted grinding, J. Mater. Process. Technol. 302 (2022) 117503. https://doi.org/10.1016/j.jmatprotec.2022.117503.

    Article  CAS  Google Scholar 

  17. O. Khanali, M. Rajabi, S. Baghshahi, Effect of non-aqueous solvents on deposition properties in electrophoretic deposition process of yttria stabilized zirconia nano-powders, J. Ceram. Process. Res. 18 (2017) 735–742. https://doi.org/10.36410/jcpr.2017.18.10.735.

    Article  Google Scholar 

  18. I. Gulyaev, V. Kuzmin, E. Kornienko, S. Vashchenko, D. Sergachev, Microstructure Formation Properties of ZrO2 Coating by Powder, Suspension and Liquid Precursor Plasma Spraying, Mater. Today Proc. 11 (2019) 430–435. https://doi.org/10.1016/j.matpr.2019.01.008.

    Article  CAS  Google Scholar 

  19. J. Kiilakoski, R. Musalek, F. Lukac, H. Koivuluoto, P. Vuoristo, Evaluating the toughness of APS and HVOF-sprayed Al2O3-ZrO2-coatings by in-situ- and macroscopic bending, J. Eur. Ceram. Soc. 38 (2018) 1908–1918. https://doi.org/10.1016/j.jeurceramsoc.2017.11.056.

    Article  CAS  Google Scholar 

  20. F. Ghadami, A. Sabour Rouh Aghdam, S. Ghadami, A comprehensive study on the microstructure evolution and oxidation resistance of conventional and nanocrystalline MCrAlY coatings, Sci. Rep. 11 (2021) 1–21. https://doi.org/10.1038/s41598-020-79323-w.

    Article  Google Scholar 

  21. F. Brossa, D. D’Angelo, E. Gandini, Structure and composition of MCrAlY coatings modified by Al additions, Le J. Phys. IV. 03 (1993) C9-559-C9-568. https://doi.org/10.1051/jp4:1993959.

    Article  Google Scholar 

  22. L. Liang, M. Xu, Y. Chen, T. Zhang, W. Tong, H. Liu, H. Wang, H. Li, Effect of welding thermal treatment on the microstructure and mechanical properties of nickel-based superalloy fabricated by selective laser melting, Mater. Sci. Eng. A. 819 (2021) 141507. https://doi.org/10.1016/j.msea.2021.141507.

    Article  CAS  Google Scholar 

  23. F. Guo, A. Javed, I.P. Shapiro, P. Xiao, Effect of HCl concentration on the sintering behavior of 8mol% Y2O3 stabilized ZrO2 deposits produced by electrophoretic deposition (EPD), J. Eur. Ceram. Soc. 32 (2012) 211–218. https://doi.org/10.1016/j.jeurceramsoc.2011.08.011.

    Article  CAS  Google Scholar 

  24. M. Mahmoudi, M. Farhadian, K. Raeissi, S. Labbaf, F. Karimzadeh, M.A. Golozar, A. Barnoush, The role of graphene oxide interlayer on corrosion barrier and bioactive properties of electrophoretically deposited ZrO2–10 at. % SiO2 composite coating on 316 L stainless steel, Mater. Sci. Eng. C. 117 (2020) 111342. https://doi.org/10.1016/j.msec.2020.111342.

    Article  CAS  Google Scholar 

  25. J. Zhou, Y. He, J. Shen, F.A. Essa, J. Yu, Ni/Ni3Al interface-dominated nanoindentation deformation and pop-in events, Nanotechnology. 33 (2021) 105703. https://doi.org/10.1088/1361-6528/ac3d62.

    Article  CAS  Google Scholar 

  26. J. Zheng, W.B. Carlson, J.S. Reed, The packing density of binary powder mixtures, J. Eur. Ceram. Soc. 15 (1995) 479–483. https://doi.org/10.1016/0955-2219(95)00001-B.

    Article  CAS  Google Scholar 

  27. D. Sun, J. Huo, H. Chen, Z. Dong, R. Ren, Experimental study of fretting fatigue in dovetail assembly considering temperature effect based on damage mechanics method, Eng. Fail. Anal. 131 (2022) 105812. https://doi.org/10.1016/j.engfailanal.2021.105812.

    Article  Google Scholar 

  28. X. Li, X. Yang, D. Yi, B. Liu, J. Zhu, J. Li, C. Gao, L. Wang, Effects of NbC content on microstructural evolution and mechanical properties of laser cladded Fe50Mn30Co10Cr10-xNbC composite coatings, Intermetallics. 138 (2021) 107309. https://doi.org/10.1016/j.intermet.2021.107309.

    Article  CAS  Google Scholar 

  29. Y. Zhong, J. Xie, Y. Chen, L. Yin, P. He, W. Lu, Microstructure and mechanical properties of micro laser welding NiTiNb/Ti6Al4V dissimilar alloys lap joints with nickel interlayer, Mater. Lett. 306 (2022) 130896. https://doi.org/10.1016/j.matlet.2021.130896.

    Article  CAS  Google Scholar 

  30. T.A. Taylor, P.N. Walsh, Thermal expansion of MCrAlY alloys, Surf. Coatings Technol. 177–178 (2004) 24–31. https://doi.org/10.1016/j.surfcoat.2003.05.001.

    Article  CAS  Google Scholar 

  31. H. Hayashi, T. Saitou, N. Maruyama, H. Inaba, K. Kawamura, M. Mori, Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents, Solid State Ionics. 176 (2005) 613–619. https://doi.org/10.1016/j.ssi.2004.08.021.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Baghshahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khezrloo, A., Baghshahi, S., Afshar, M.R. et al. Sintering and Thermal Shock Behavior of Yttria-Stabilized Zirconia Coating Deposited by Electrophoretic Method On Inconel 738LC Superalloy. Trans Indian Inst Met 75, 2617–2627 (2022). https://doi.org/10.1007/s12666-022-02626-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02626-1

Keywords

Navigation