Skip to main content

Advertisement

Log in

In Situ Process Monitoring for Additive Manufacturing Through Acoustic Techniques

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Additive manufacturing (AM) is an emerging field where a complex geometrical model can be made with no requirement of individual parts and assembly production. This advantage provides the capability for fabricating components in a single integrated process. On the contrary, lack of non-destructive testing adoption due to complex geometries of final products, makes this technology less convenient for the production of critical parts with high accuracy. Non-destructive testing through acoustic techniques is one of the most popular methodologies for AM inspection because of its provision to detect defects on the internal structure of the components. The technique has also been used in other types of fabrication processes (machining and welding) for defect monitoring. There are several studies where acoustic data acquisition and analysis have been done to detect cracks and other anomalies. In this paper, the progress of using acoustic techniques for AM process and part quality monitoring has been reviewed, and critical discussion has been made for the potential application of acoustic techniques toward quality inspection and monitoring in AM technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

This article is a review paper, and no technical data are associated with the paper. All other referred data are cited in the text for the original sources.

References

  1. H. Taheri, M.R.B.M. Shoaib, L.W. Koester, T.A. Bigelow, P.C. Collins, and L.J. Bond, Powder-Based Additive Manufacturing—A Review of Types of Defects, Generation Mechanisms, Detection, Property Evaluation and Metrology, Int. J. Addit. Subtract. Mater. Manuf., 2017, 1(2), p 172. https://doi.org/10.1504/ijasmm.2017.10009247

    Article  Google Scholar 

  2. J. Kruth, B. Vandenbroucke, J. Van Vaerenbergh, and I. Naert, Rapid Manufacturing of Dental Prostheses by Means of Selective Laser Sintering/Melting,p. 2.

  3. S. Bontha, N.W. Klingbeil, P.A. Kobryn, and H.L. Fraser, Thermal Process Maps for Predicting Solidification Microstructure in Laser Fabrication of Thin-Wall Structures, J. Mater. Process. Technol., 2006, 178(1–3), p 135–142. https://doi.org/10.1016/j.jmatprotec.2006.03.155

    Article  CAS  Google Scholar 

  4. S. Berumen, F. Bechmann, S. Lindner, J.P. Kruth, and T. Craeghs, Quality Control of Laser- and Powder Bed-Based Additive Manufacturing (AM) Technologies, Phys. Proc., 2010, 5(2), p 617–622. https://doi.org/10.1016/j.phpro.2010.08.089

    Article  Google Scholar 

  5. Z. Ge, Z. Song, and F. Gao, Review of Recent Research on Data-Based Process Monitoring, Ind. Eng. Chem. Res., 2013, 52(10), p 3543–3562. https://doi.org/10.1021/ie302069q

    Article  CAS  Google Scholar 

  6. M. Kano and Y. Nakagawa, Data-Based Process Monitoring, Process Control, and Quality Improvement: Recent Developments and Applications in Steel Industry, Comput. Chem. Eng., 2008, 32(1–2), p 12–24. https://doi.org/10.1016/j.compchemeng.2007.07.005

    Article  CAS  Google Scholar 

  7. S.J. Qin, Survey on Data-Driven Industrial Process Monitoring and Diagnosis, Annu. Rev. Control, 2012, 36(2), p 220–234. https://doi.org/10.1016/j.arcontrol.2012.09.004

    Article  Google Scholar 

  8. S. Yin, S.X. Ding, X. Xie, and H. Luo, A Review on Basic Data-Driven Approaches for Industrial Process Monitoring, IEEE Trans. Ind. Electron., 2014, 61(11), p 6414–6428. https://doi.org/10.1109/TIE.2014.2301773

    Article  Google Scholar 

  9. M.W. Milo, M. Roan, and B. Harris, A New Statistical Approach to Automated Quality Control in Manufacturing Processes, J. Manuf. Syst., 2015, 36, p 159–167. https://doi.org/10.1016/j.jmsy.2015.06.001

    Article  Google Scholar 

  10. W.E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform., 2014, 23(6), p 1917–1928. https://doi.org/10.1007/s11665-014-0958-z

    Article  CAS  Google Scholar 

  11. Q.Y. Lu and C.H. Wong, Additive Manufacturing Process Monitoring and Control by Non-Destructive Testing Techniques: Challenges and in-Process Monitoring, Virt. Phys. Prototyp., 2017, 13(2), p 39–48. https://doi.org/10.1080/17452759.2017.1351201

    Article  Google Scholar 

  12. M. Strantza, D.G. Aggelis, D. de Baere, P. Guillaume, and D. van Hemelrijck, Evaluation of SHM System Produced by Additive Manufacturing Via Acoustic Emission and Other NDT Methods, Sensors (Switzerland), 2015, 15(10), p 26709–26725. https://doi.org/10.3390/s151026709

    Article  Google Scholar 

  13. H. Taheri, Nondestructive Evaluation and In Situ Monitoring for Metal Additive Manufacturing, pp. 61–75, 2018.

  14. Y. Plotnikov, D. Henkel, J. Burdick, A. French, J. Sions, and K. Bourne, Infrared-Assisted Acoustic Emission Process Monitoring For Additive Manufacturing. in AIP Conference Proceedings, 2019, vol. 2102, https://doi.org/10.1063/1.5099710.

  15. Á. Angulo, J. Tang, A. Khadimallah, S. Soua, C. Mares, and T.H. Gan, Acoustic Emission Monitoring of Fatigue Crack Growth in Mooring Chains, Appl. Sci., 2019, https://doi.org/10.3390/app9112187

    Article  Google Scholar 

  16. H. Wu, Y. Wang, and Z. Yu, In Situ Monitoring of FDM Machine Condition Via Acoustic Emission, Int. J. Adv. Manuf. Technol., 2016, 84(1–4), p 561–574. https://doi.org/10.1007/s00170-015-7809-4

    Article  Google Scholar 

  17. L.W. Koester, H. Taheri, T.A. Bigelow, L.J. Bond, and E.J. Faierson, In-Situ Acoustic Signature Monitoring in Additive Manufacturing Processes, AIP Conf. Proc., 2018, 1949, p 020006. https://doi.org/10.1063/1.5031503

    Article  CAS  Google Scholar 

  18. H. Gaja and F. Liou, Defects Monitoring of Laser Metal Deposition Using Acoustic Emission Sensor, Int. J. Adv. Manuf. Technol., 2016, 90(1–4), p 561–574. https://doi.org/10.1007/s00170-016-9366-x

    Article  Google Scholar 

  19. G. Tapia and A. Elwany, A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing, J. Manuf. Sci. Eng., 2014, 136(6), p 60801–60810. https://doi.org/10.1115/1.4028540

    Article  Google Scholar 

  20. S.K. Everton, M. Hirsch, P. Stravroulakis, R.K. Leach, and A.T. Clare, Review of in Situ Process Monitoring and in Situ Metrology for Metal Additive Manufacturing, Mater. Des., 2016, 95, p 431–445. https://doi.org/10.1016/j.matdes.2016.01.099

    Article  CAS  Google Scholar 

  21. J.M. Waller, B.H. Parker, K.L. Hodges, E.R. Burke, and J.L. Walker, Nondestructive Evaluation of Additive Manufacturing State-of-the-Discipline Report, Nasa/Tm-2014-218560, pp. 1–36, 2014, https://doi.org/10.13140/rg.2.1.1227.9844.

  22. A. Du Plessis, S.G. Le Roux, J. Els, G. Booysen, and D.C. Blaine, Application of microCT to the Non-destructive Testing of an Additive Manufactured Titanium Component, Case Stud. Nondestruct. Test. Eval., 2015, 4, p 1–7. https://doi.org/10.1016/j.csndt.2015.09.001

    Article  Google Scholar 

  23. S.J. Wolff et al., In-Situ High-Speed X-ray Imaging of Piezo-Driven Directed Energy Deposition Additive Manufacturing, Sci. Rep., 2019, 9(1), p 1–14. https://doi.org/10.1038/s41598-018-36678-5

    Article  CAS  Google Scholar 

  24. C.L.A. Leung, S. Marussi, R.C. Atwood, M. Towrie, P.J. Withers, and P.D. Lee, In Situ X-ray Imaging of Defect and Molten Pool Dynamics in Laser Additive Manufacturing, Nat. Commun., 2018, 9(1), p 1–9. https://doi.org/10.1038/s41467-018-03734-7

    Article  CAS  Google Scholar 

  25. T. Purtonen, A. Kalliosaari, and A. Salminen, Monitoring and Adaptive Control of Laser Processes, Phys. Proc., 2014, 56, p 1218–1231. https://doi.org/10.1016/j.phpro.2014.08.038

    Article  Google Scholar 

  26. T. Craeghs, S. Clijsters, J.P. Kruth, F. Bechmann, and M.C. Ebert, Detection of Process Failures in Layerwise Laser Melting with Optical Process Monitoring, Phys. Proc., 2012, 39, p 753–759. https://doi.org/10.1016/j.phpro.2012.10.097

    Article  Google Scholar 

  27. R. Usamentiaga, P. Venegas, J. Guerediaga, L. Vega, J. Molleda, and F.G. Bulnes, Infrared Thermography for Temperature Measurement and Non-destructive Testing, Sensors (Switzerland), 2014, 14(7), p 12305–12348. https://doi.org/10.3390/s140712305

    Article  Google Scholar 

  28. J. Mireles, S. Ridwan, P.A. Morton, A. Hinojos, and R.B. Wicker, Analysis and Correction of Defects Within Parts Fabricated Using Powder Bed Fusion Technology, Surf. Topogr. Metrol. Prop., 2015, https://doi.org/10.1088/2051-672x/3/3/034002

    Article  Google Scholar 

  29. H. Krauss, T. Zeugner, and M.F. Zaeh, Thermographic Process Monitoring in Powderbed Based Additive Manufacturing, AIP Conf. Proc., 2015, 1650(177), p 177–183. https://doi.org/10.1063/1.4914608

    Article  Google Scholar 

  30. A. Lopez, R. Bacelar, I. Pires, T.G. Santos, J.P. Sousa, and L. Quintino, Non-destructive Testing Application of Radiography and Ultrasound for Wire and Arc Additive Manufacturing, Addit. Manuf., 2018, 21, p 298–306. https://doi.org/10.1016/j.addma.2018.03.020

    Article  CAS  Google Scholar 

  31. J. Shao and Y. Yan, Review of Techniques for On-line Monitoring and Inspection of Laser Welding, J. Phys. Conf. Ser., 2005, 15, p 101–107. https://doi.org/10.1088/1742-6596/15/1/017

    Article  Google Scholar 

  32. L. Li, A Comparative Study of Ultrasound Emission Characteristics in Laser Processing, Appl. Surf. Sci., 2002, 186(1–4), p 604–610. https://doi.org/10.1016/S0169-4332(01)00695-X

    Article  CAS  Google Scholar 

  33. H. Taheri, L.W. Koester, T.A. Bigelow, and L.J. Bond, Thermoelastic Finite Element Modeling of Laser Generated Ultrasound in Additive Manufacturing Materials, in 2017 ASNT Annual Conference, 2017, pp. 188–198.

  34. C. Scruby and L. Drain, Laser Ultrasonic Testing and Applications, Taylor & Francis Group, New York, NY, 1990.

  35. M. Grasso and B.M. Colosimo, Process Defects and In Situ Monitoring Methods in Metal Powder Bed Fusion: A Review, Meas. Sci. Technol., 2017, 28(4), p 44005. https://doi.org/10.1088/1361-6501/aa5c4f

    Article  CAS  Google Scholar 

  36. C. Zhao et al., Real-Time Monitoring of Laser Powder Bed Fusion Process Using High-Speed X-Ray Imaging and Diffraction, Sci. Rep., 2017, 7(1), p 3602. https://doi.org/10.1038/s41598-017-03761-2

    Article  CAS  Google Scholar 

  37. ASTM E1316-07b, Standard Terminology for Nondestructive Examinations. West Conshohocken: ASTM International, 2007.

  38. A. Nair and C.S. Cai, Acoustic Emission Monitoring of Bridges: Review and Case Studies, Eng. Struct., 2010, 32(6), p 1704–1714. https://doi.org/10.1016/j.engstruct.2010.02.020

    Article  Google Scholar 

  39. M. Wevers and M. Surgeon, Acoustic Emission and Composites, Comprehens. Compos. Mater., 2000, 129(4), p 345–357

    Article  Google Scholar 

  40. C.B. Scruby, C. Jones, J.M. Titchmarsh, and H.N.G. Wadley, Relationship Between microstructure and acoustic Emission in Mn-Mo-Ni A533B Steel, Met. Sci., 1981, 44(6), p 241–261

    Article  Google Scholar 

  41. K.L. Rens, T.J. Wipf, and F.W. Klaiber, Review of Nondestructive Evaluation Techniques of Civil Infrastructure, J. Perform. Constr. Facil., 1997, 11(4), p 152–160. https://doi.org/10.1061/(ASCE)0887-3828(1997)11:4(152)

    Article  Google Scholar 

  42. P. Ziehl and A. Lamana, Monitoring of the Bonnet Carré Spillway Bridge During Extreme OverloadOverload 6. Performing Organization Code,” no. 3, 2003.

  43. R.S. Gostautas, G. Ramirez, R.J. Peterman, and D. Meggers, Acoustic Emission Monitoring and Analysis of Glass Fiber-Reinforced Composites Bridge Decks, J. Bridg. Eng., 2005, 10(6), p 713–721. https://doi.org/10.1061/(ASCE)1084-0702(2005)10:6(713)

    Article  Google Scholar 

  44. S.Y. Liang and D.A. Dornfeld, Tool Wear Detection Using Time Series Analysis of Acoustic Emission, J. Manuf. Sci. Eng. Trans. ASME, 1989, 111(3), p 199–205. https://doi.org/10.1115/1.3188750

    Article  Google Scholar 

  45. X. Li, A Brief Review: Acoustic Emission Method for Tool Wear Monitoring During Turning, Int. J. Mach. Tools Manuf., 2002, 42(2), p 157–165. https://doi.org/10.1016/S0890-6955(01)00108-0

    Article  Google Scholar 

  46. C. James Li and S.Y. Li, Acoustic Emission Analysis for Bearing Condition Monitoring, Wear, 1995, 185(1–2), p 67–74. https://doi.org/10.1016/0043-1648(95)06591-1

    Article  CAS  Google Scholar 

  47. A. Choudhury and N. Tandon, Application of Acoustic Emission Technique for the Detection of Defects in Rolling Element Bearings, Tribol. Int., 2000, 33(1), p 39–45. https://doi.org/10.1016/S0301-679X(00)00012-8

    Article  Google Scholar 

  48. S.M. Yadavar Nikravesh, H. Rezaie, M. Kilpatrik, and H. Taheri, Intelligent Fault Diagnosis of Bearings Based on Energy Levels in Frequency Bands Using Wavelet and Support Vector Machines (SVM), J. Manuf. Mater. Process., 2019, 3(1), p 11. https://doi.org/10.3390/jmmp3010011

    Article  Google Scholar 

  49. K.A. Fisher, J.V. Candy, G. Guss, and M.J. Mathews, Evaluating Acoustic Emission Signals as an In Situ Process Monitoring Technique for Selective Laser Melting (SLM), 2016. https://doi.org/10.2172/1342013.

  50. S. Ludwig, Instrumented Build Plate for in situ Stress Monitoring and Crack Detection during the Laser Powder Bed Fusion Additive Manufacturing Process. The University of North Carolina at Charlotte, 2020.

  51. S. Ball, Location of Cracks Occurring in an Additive Manufacturing Process by Acoustic Emission, Br. Soc. Strain Meas., 2018, pp. 11–12.

  52. S.A. Shevchik, C. Kenel, C. Leinenbach, and K. Wasmer, Acoustic Emission for in Situ Quality Monitoring in Additive Manufacturing Using Spectral Convolutional Neural Networks, Addit. Manuf., 2018, 21, p 598–604. https://doi.org/10.1016/j.addma.2017.11.012

    Article  Google Scholar 

  53. N. Eschner, L. Weiser, B. Häfner, and G. Lanza, “Development of an acoustic process monitoring system for selective laser melting (SLM),” Solid Freedom Fabrication 2018 Proceedings of 29th Annual International Solid Freedom Fabrication SymposiumAn Additive Manufacturing Conference SFF 2018, no. Reschetnik 2017, pp. 2097–2117 (2020).

  54. D. Kouprianoff, N. Luwes, I. Yadroitsava, and I. Yadroitsev, Acoustic emission technique for online detection of fusion defects for single tracks during metal laser powder bed fusion. Solid Freedom Fabrication 2018 Proceedings of 29th Annual International Solid Freeform Fabrication SymposiumAn Additive Manufacturing Conference SFF 2018, pp. 2087–2096 (2020).

  55. J. Whiting, A. Springer, and F. Sciammarella, Real-Time Acoustic Emission Monitoring of Powder Mass Flow Rate for Directed Energy Deposition, Addit. Manuf., 2018, https://doi.org/10.1016/j.addma.2018.08.015

    Article  Google Scholar 

  56. H. Gaja and F. Liou, Defect Classification of Laser Metal Deposition Using Logistic Regression and Artificial Neural Networks for Pattern Recognition, Int. J. Adv. Manuf. Technol., 2018, 94(1), p 315–326. https://doi.org/10.1007/s00170-017-0878-9

    Article  Google Scholar 

  57. H. Taheri, L.W. Koester, T.A. Bigelow, E.J. Faierson, and L.J. Bond, In Situ Additive Manufacturing Process Monitoring With an Acoustic Technique: Clustering Performance Evaluation Using K-Means Algorithm, J. Manuf. Sci. Eng., 2019, 141(4), p 41010–41011. https://doi.org/10.1115/1.4042786

    Article  Google Scholar 

  58. L.J. Bond, L.W. Koester, and H. Taheri, NDE In-Process for Metal Parts Fabricated Using Powder Based Additive Manufacturing, Proc. SPIE, 2019, 10973, p 1097302. https://doi.org/10.1117/12.2520611

    Article  Google Scholar 

  59. H. Wu, Y. Wang, and Z. Yu, In Situ Monitoring of FDM Machine Condition Via Acoustic Emission, Int. J. Adv. Manuf. Technol., 2016, 84(5–8), p 1483–1495. https://doi.org/10.1007/s00170-015-7809-4

    Article  Google Scholar 

  60. H. Wu, Z. Yu, and Y. Wang, “A new approach for online monitoring of additive manufacturing based on acoustic emission,” Proceedings of the ASME 2016 11th International Manufacturing Science and Engineering Conference (2016). https://doi.org/10.1115/MSEC2016-8551

  61. F. Li, Z. Yu, Z. Yang, and X. Shen, Real-Time Distortion Monitoring During Fused Deposition Modeling Via Acoustic Emission, Struct. Heal. Monit., 2019, 19(2), p 412–423. https://doi.org/10.1177/1475921719849700

    Article  Google Scholar 

  62. Z. Yang, L. Jin, Y. Yan, and Y. Mei, Filament Breakage Monitoring In Fused Deposition Modeling Using Acoustic Emission Technique, Sensors (Switzerland), 2018, 18(3), p 1–16. https://doi.org/10.3390/s18030749

    Article  CAS  Google Scholar 

  63. S.A. Gold and T.G. Spears, Acoustic Monitoring Method for Additive Manufacturing Processes. US9989495B2 (2018).

  64. M.R. Redding, S.A. Gold, and T.G. Spears, Non-contact Acoustic Inspection Method for Additive Manufacturing Processes. US010073060B2 (2018).

  65. H. Taheri, F. Delfanian, and J. Du, Acoustic Emission and Ultrasound Phased Array Technique for Composite Material Evaluation. in ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) Volume 1: Advances in Aerodynamics, Nov. 2013, vol. 1, p. V001T01A015, 8. https://doi.org/10.1115/imece2013-62447.

  66. H. Taheri, Classification of Nondestructive Inspection Techniques with Principal Component Analysis (PCA) for Aerospace Application. in ASNT 26th Research Symposium, 2017, pp. 219–227.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Shahjahan Hossain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.S., Taheri, H. In Situ Process Monitoring for Additive Manufacturing Through Acoustic Techniques. J. of Materi Eng and Perform 29, 6249–6262 (2020). https://doi.org/10.1007/s11665-020-05125-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05125-w

Keywords

Navigation