Skip to main content

Advertisement

Log in

Novel Porous Barium Titanate/Nano-bioactive Glass Composite with High Piezoelectric Coefficient for Bone Regeneration Applications

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Recently, porous bioceramics are widely used in bone tissue engineering in order to the regeneration of damaged tissues. Piezoelectric effect in bone plays a very important role in bone regeneration. Therefore, the purpose of this study was the fabrication of porous barium titanate (BT)/nanobioglass (nBG) scaffold (vol.% BT = 75% and 90%) with high piezoelectric coefficient by freeze casting technique. For this purpose, BT and nBG powders were synthesized using solid-state and sol–gel methods, respectively. Partial recrystallization of nBG phase during sintering process occurred. The highly oriented lamellar microstructure of the fabricated BT90/nBG10 scaffold with open/interconnected porosities observed. The BT75/nBG25 composite scaffold exhibited higher value of density (1.18 ± 0.1 g/cm3) and lower amount of porosities (77 ± 1%) compared to the BT90/nBG10 scaffold (0.99 ± 0.1 g/cm3 and 82 ± 1%). The piezoelectric coefficients of the BT90/nBG10 and BT75/nBG25 composite scaffolds obtained 36 pC/N and 24 pC/N which were much higher than that of the natural human bone. The BT75/nBG25 scaffold showed more compressive strength (16.9 ± 1.1 MPa) than that of BT90/nBG10 composite scaffold (8.1 ± 0.3 MPa). The MTT results after 24, 72 and 168 h of culture showed that both composites had acceptable cell viability and cells were able to adhere, proliferate and migrate into pores of the scaffolds. Furthermore, cell density and adhesion were little bit higher in the BT75/nBG25 composite. These results indicated that highly porous barium titanate scaffolds have great potential in tissue engineering applications for bone tissue repair and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Gaihre and A.C. Jayasuriya, Comparative Investigation of Porous Nano-hydroxyapaptite/Chitosan, Nano-Zirconia/Chitosan and Novel Nano-calcium Zirconate/Chitosan Composite Scaffolds for Their Potential Applications in Bone Regeneration, Mater. Sci. Eng., C, 2018, 91, p 330–339

    Article  CAS  Google Scholar 

  2. M.R. Derakhshandeh, M.J. Eshraghi, M.M. Hadavi, M. Javaheri, S. Khamseh, M.G. Sari et al., Diamond-Like Carbon thin FILMS Prepared by pulsed-DC PE-CVD for Biomedical Applications, Surf. Innov., 2018, 6, p 167–175

    Article  Google Scholar 

  3. S.M.R. Derakhshandeh, M.J. Eshraghi, M. Javaheri, S. Khamseh, M.G. Sari, P. Zarrintaj et al., Diamond-Like Carbon-Deposited Films: a New Class of Bio-Corrosion Protective Coatings, Surf. Innov., 2018, 6, p 266–276

    Article  Google Scholar 

  4. J.N. Harvestine, N.L. Vollmer, S.S. Ho, C.A. Zikry, M.A. Lee, and J.K. Leach, Extracellular Matrix-Coated COMPOSITE scaffolds Promote mesenchymal Stem Cell Persistence and Osteogenesis, Biomacromol, 2016, 17, p 3524–3531

    Article  CAS  Google Scholar 

  5. L. Stipniece, I. Narkevica, M. Sokolova, J. Locs, and J. Ozolins, Novel Scaffolds Based on Hydroxyapatite/Poly (VINYL alcohol) Nanocomposite Coated Porous TiO2 Ceramics for Bone Tissue Engineering, Ceram. Int., 2016, 42, p 1530–1537

    Article  CAS  Google Scholar 

  6. B. Chang, W. Song, T. Han, J. Yan, F. Li, L. Zhao et al., Influence of Pore Size of Porous Titanium Fabricated by Vacuum Diffusion Bonding of Titanium Meshes on Cell Penetration and Bone Ingrowth, Acta Biomater., 2016, 33, p 311–321

    Article  CAS  Google Scholar 

  7. D.-M. Liu, Influence of Porosity and Pore Size on the Compressive Strength of Porous Hydroxyapatite Ceramic, Ceram. Int., 1997, 23, p 135–139

    Article  CAS  Google Scholar 

  8. Y. Tang, K. Zhao, L. Hu, and Z. Wu, Two-Step Freeze Casting Fabrication of Hydroxyapatite Porous Scaffolds with Bionic Bone Graded Structure, Ceram. Int., 2013, 39, p 9703–9707

    Article  CAS  Google Scholar 

  9. D. Nadeem, M. Kiamehr, X. Yang, and B. Su, Fabrication and In vitro Evaluation of a Sponge-Like Bioactive-Glass/Gelatin Composite Scaffold for Bone Tissue Engineering, Mater. Sci. Eng., C, 2013, 33, p 2669–2678

    Article  CAS  Google Scholar 

  10. Z. Khurshid, S. Husain, H. Alotaibi, R. Rehman, M.S. Zafar, I. Farooq et al., Novel Techniques of Scaffold Fabrication for Bioactive Glasses, Elsevier, Amsterdam, 2019, p 497–519

    Google Scholar 

  11. G. Kaur, V. Kumar, F. Baino, J.C. Mauro, G. Pickrell, I. Evans et al., Mechanical Properties of Bioactive Glasses, Ceramics, Glass-Ceramics and Composites: State-of-the-Art Review and Future Challenges, Mater. Sci. Eng. C, 2019, 104, p 109895

    Article  CAS  Google Scholar 

  12. A. Motealleh, S. Eqtesadi, F.H. Perera, A.L. Ortiz, P. Miranda, A. Pajares et al., Reinforcing 13–93 Bioglass Scaffolds Fabricated by Robocasting and Pressureless Spark Plasma Sintering with Graphene Oxide, J. Mech. Behav. Biomed. Mater., 2019, 97, p 108–116

    Article  CAS  Google Scholar 

  13. X. Liu, M.N. Rahaman, and Q. Fu, Bone Regeneration in Strong Porous Bioactive Glass (13-93) Scaffolds with an Oriented Microstructure Implanted in Rat Calvarial Defects, Acta Biomater., 2013, 9, p 4889–4898

    Article  CAS  Google Scholar 

  14. T.M. Freyman, I.V. Yannas, and L.J. Gibson, Cellular Materials as Porous Scaffolds for Tissue Engineering, Prog. Mater Sci., 2001, 46, p 273–282

    Article  CAS  Google Scholar 

  15. F. Baino, E. Fiume, M. Miola, F. Leone, B. Onida, and E. Verné, Fe-Doped Bioactive Glass-Derived Scaffolds produced by Sol-Gel foaming, Mater. Lett., 2019, 235, p 207–211

    Article  CAS  Google Scholar 

  16. S. Cabanas-Polo, A. Philippart, E. Boccardi, J. Hazur, and A.R. Boccaccini, Facile Production of Porous Bioactive Glass Scaffolds by the Foam Replica Technique Combined with Sol–Gel/Electrophoretic Deposition, Ceram. Int., 2016, 42, p 5772–5777

    Article  CAS  Google Scholar 

  17. Q. Fu, E. Saiz, M.N. Rahaman, and A.P. Tomsia, Bioactive Glass Scaffolds for Bone Tissue Engineering: State of the Art and Future Perspectives, Mater. Sci. Eng., C, 2011, 31, p 1245–1256

    Article  CAS  Google Scholar 

  18. D.M.M. dos Santos, S.M. de Carvalho, M.M. Pereira, M. Houmard, and E.H.M. Nunes, Freeze-Cast Composite Scaffolds Prepared from Sol-Gel Derived 58S Bioactive Glass and Polycaprolactone, Ceram. Int., 2019, 45, p 9891–9900

    Article  Google Scholar 

  19. K.L. Scotti and D.C. Dunand, Freeze Casting–A Review of Processing, Microstructure and Properties Via the Open Data Repository, FreezeCasting. net, Prog. Mater. Sci., 2018, 94, p 243–305

    Article  CAS  Google Scholar 

  20. E. Fukada and I. Yasuda, On the Piezoelectric Effect of Bone, J. Phys. Soc. Jpn., 1957, 12, p 1158–1162

    Article  Google Scholar 

  21. J. Park and R.S. Lakes, Biomaterials: An Introduction, Springer, Berlin, 2007

    Google Scholar 

  22. F. Jianqing, Y. Huipin, and Z. Xingdong, Promotion of Osteogenesis by a Piezoelectric Biological Ceramic, Biomaterials, 1997, 18, p 1531–1534

    Article  Google Scholar 

  23. Y. Zhang, L. Chen, J. Zeng, K. Zhou, and D. Zhang, Aligned Porous Barium Titanate/Hydroxyapatite Composites with High Piezoelectric Coefficients for Bone Tissue Engineering, Mater. Sci. Eng., C, 2014, 39, p 143–149

    Article  CAS  Google Scholar 

  24. A. Ehterami, M. Kazemi, B. Nazari, P. Saraeian, and M. Azami, Fabrication and Characterization of Highly Porous Barium Titanate Based Scaffold Coated by Gel/HA Nanocomposite with High Piezoelectric Coefficient for Bone Tissue Engineering Applications, J. Mech. Behav. Biomed. Mater., 2018, 79, p 195–202

    Article  CAS  Google Scholar 

  25. F.R. Baxter, I.G. Turner, C.R. Bowen, J.P. Gittings, and J.B. Chaudhuri, An In Vitro Study of Electrically Active Hydroxyapatite-Barium Titanate Ceramics Using Saos-2 Cells, J. Mater. Sci. Mater. Med., 2009, 20, p 1697–1708

    Article  CAS  Google Scholar 

  26. H. Shokrollahi, F. Salimi, and A. Doostmohammadi, The Fabrication and Characterization of Barium Titanate/Akermanite Nano-bio-ceramic with a Suitable Piezoelectric Coefficient for Bone Defect Recovery, J. Mech. Behav. Biomed. Mater., 2017, 74, p 365–370

    Article  CAS  Google Scholar 

  27. M.H. Fathi and A. Doostmohammadi, Preparation and Characterization of Sol–Gel Bioactive Glass Coating for Improvement of Biocompatibility of Human Body Implant, Mater. Sci. Eng., A, 2008, 474, p 128–133

    Article  Google Scholar 

  28. S.M.R. Derakhshandeh, S.M.M. Hadavi, M.J. Eshraghi, M. Javaheri, and M. Mozafari, Improved Electrochemical Performance of Nitrocarburised Stainless Steel by Hydrogenated Amorphous Carbon Thin Films for Bone Tissue Engineering, IET Nanobiotechnol., 2017, 11, p 656–660

    Article  Google Scholar 

  29. K. Zheng and A.R. Boccaccini, Sol-gel Processing of Bioactive Glass Nanoparticles: A Review, Adv. Colloid Interface Sci., 2017, 249, p 363–373

    Article  CAS  Google Scholar 

  30. Y. Liu, N. Fang, B. Liu, L. Song, B. Wen, and D. Yang, Aligned Porous Chitosan/Graphene Oxide Scaffold for Bone Tissue Engineering, Mater. Lett., 2018, 233, p 78–81

    Article  CAS  Google Scholar 

  31. S. Algharaibeh, A.J. Ireland, and B. Su, Bi-directional Freeze Casting of Porous Alumina Ceramics: A Study of the Effects of Different Processing Parameters on Microstructure, J. Eur. Ceram. Soc., 2019, 39, p 514–521

    Article  CAS  Google Scholar 

  32. Y. Tang, S. Qiu, Q. Miao, and C. Wu, Fabrication of Lamellar Porous Alumina with Axisymmetric Structure by Directional Solidification with Applied Electric and Magnetic Fields, J. Eur. Ceram. Soc., 2016, 36, p 1233–1240

    Article  CAS  Google Scholar 

  33. S. Deville, E. Saiz, and A.P. Tomsia, Freeze castiNg of Hydroxyapatite Scaffolds for Bone Tissue Engineering, Biomaterials, 2006, 27, p 5480–5489

    Article  CAS  Google Scholar 

  34. P.L. Blanton and N.L. Biggs, Density of Fresh and Embalmed Human Compact and Cancellous Bone, Am. J. Phys. Anthropol., 1968, 29, p 39–44

    Article  CAS  Google Scholar 

  35. R. Hodgskinson, C.F. Njeh, M.A. Whitehead, and C.M. Langton, The Non-linear Relationship Between BUA and Porosity in Cancellous Bone, Phys. Med. Biol., 1996, 41, p 2411

    Article  CAS  Google Scholar 

  36. R. Guo, C.-A. Wang, and A. Yang, Effects of Pore Size and Orientation on Dielectric and Piezoelectric Properties of 1-3 Type Porous PZT Ceramics, J. Eur. Ceram. Soc., 2011, 31, p 605–609

    Article  CAS  Google Scholar 

  37. M. Martens, R. Van Audekercke, P. Delport, P. De Meester, and J.C. Mulier, The Mechanical Characteristics of Cancellous Bone at the Upper Femoral Region, J. Biomech., 1983, 16, p 971–983

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Doostmohammadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeidi, B., Derakhshandeh, M.R., Delshad Chermahini, M. et al. Novel Porous Barium Titanate/Nano-bioactive Glass Composite with High Piezoelectric Coefficient for Bone Regeneration Applications. J. of Materi Eng and Perform 29, 5420–5427 (2020). https://doi.org/10.1007/s11665-020-05016-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05016-0

Keywords

Navigation