Skip to main content
Log in

Deformation Mechanism and Constitutive Consideration for Ti-5Al-5Mo-5V-3Cr-1Zr Alloy Compressed at Elevated Temperatures

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

To investigate hot deformation behavior of a Ti55531 alloy, a series of isothermal compression tests were performed on a Gleeble-3500 simulator at the temperature range of 1033–1153 K and constant strain rates of 0.001–1 s−1. Based on the experimental flow stress data, processing map and grain morphology, the deformation mechanism map was summarized. In this study, the dominant microstructural mechanism processed near or above β-transus temperature was considered to be deformation characteristic of β phase, where dynamic recovery was in dominant and at mediate strain rate dynamic recrystallization was also observed. Superplasticity was found at 1003–1033 K and 0.001 s−1, correlating with dislocation glide and grain boundary slide (GBS). Undesirable plastic flow such as flow localization and flow rotation was found at high strain rate of 0.1-1 s−1 and at the entire test temperature range. The optimum working window of this alloy was finally obtained at 1003–1063 K and 1093–1153 K and at 0.001–0.1 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. I. Weiss and S.L. Semiatin, Thermomechanical Processing of Beta Titanium Alloys—An Overview, Mater. Sci. Eng. A, 1998, 243(1), p 46–65

    Google Scholar 

  2. R.R. Boyer and R.D. Briggs, The Use of Beta Titanium Alloys in the Aerospace Industry, J. Mater. Eng. Perform., 2013, 22(10), p 2916–2920

    CAS  Google Scholar 

  3. Q. Meng, C. Bai, and D. Xu, Flow Behavior and Processing Map for Hot Deformation of ATI425 Titanium Alloy, J. Mater. Sci. Technol., 2018, 34(4), p 679–688

    Google Scholar 

  4. M. Jackson, N.G. Jones, D. Dye, and R.J. Dashwood, Effect of Initial Microstructure on Plastic Flow Behaviour During Isothermal Forging of Ti-10V-2Fe-3Al, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2009, 501(1–2), p 248–254

    Google Scholar 

  5. R.Q. Bao, X. Huang, and C.X. Cao, Deformation Behavior and Mechanisms of Ti-1023 Alloy, Trans. Nonferrous Met. Soc. China, 2006, 16(2), p 274–280

    Google Scholar 

  6. T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y. Prasad, Hot Working of Commercial Ti-6Al-4V with an Equiaxed Alpha-Beta Microstructure: Materials Modeling Considerations, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2000, 284(1–2), p 184–194

    Google Scholar 

  7. J.K. Fan, H.C. Kou, M.J. Lai, B. Tang, H. Chang, and J.S. Li, Characterization of Hot Deformation Behavior of Anew Near Beta Titanium Alloy: Ti-7333, Mater. Des., 2013, 49, p 945–952

    CAS  Google Scholar 

  8. V.V. Balasubrahmanyam and Y.V.R.K. Prasad, Hot Deformation Mechanisms in Ti-5.5Al-1Fe Alloy, J. Mater. Eng. Perform., 2001, 10(6), p 731–739

    CAS  Google Scholar 

  9. X.G. Fan, Y. Zhang, P.F. Gao, Z.N. Lei, and M. Zhan, Deformation Behavior and Microstructure Evolution During Hot Working of a Coarse-Grained Ti-5Al-5Mo-5V-3Cr-1Zr Titanium Alloy in Beta Phase Field, Mater. Sci. Eng. A, 2017, 694, p 24–32

    CAS  Google Scholar 

  10. Y.-P. Lv, S.-J. Li, X.-Y. Zhang, Z.-Y. Li, and K.-C. Zhou, Modeling and Finite Element Analysis for the Dynamic Recrystallization Behavior of Ti-5Al-5Mo-5V-3Cr-1Zr Near Beta Titanium Alloy During Hot Deformation, High Temp. Mater. Processes (London), 2018, 37(5), p 445–454

    CAS  Google Scholar 

  11. F. Warchomicka, C. Poletti, and M. Stockinger, Study of the Hot Deformation Behaviour in Ti–5Al–5Mo–5V–3Cr–1Zr, Mater. Sci. Eng. A, 2011, 528(28), p 8277–8285

    CAS  Google Scholar 

  12. M. Dikovits, C. Poletti, and F. Warchomicka, Deformation Mechanisms in the Near-β Titanium Alloy Ti-55531, Metall. Mater. Trans. A, 2014, 45(3), p 1586–1596

    CAS  Google Scholar 

  13. W. Chuan and H. Liang, Hot Deformation and Dynamic Recrystallization of a Near-Beta Titanium Alloy in the β Single Phase Region, Vacuum, 2018, 156, p 384–401

    CAS  Google Scholar 

  14. P. Wan, K. Wang, H. Zou, S. Lu, and X. Li, Study on Hot Deformation and Process Parameters Optimization of Ti-10.2Mo-4.9Zr-5.5Sn alloy, J. Alloys Compd., 2019, 777, p 812–820

    CAS  Google Scholar 

  15. P. Wanjara, M. Jahazi, H. Monajati, S. Yue, and J.P. Immarigeon, Hot Working Behavior of Near-α Alloy IMI834, Mater. Sci. Eng. A, 2005, 396(1), p 50–60

    Google Scholar 

  16. L.X. Ma, M. Wan, W.D. Li, J. Shao, and X.P. Bai, Constitutive Modeling and Processing Map for Hot Deformation of Ti-15Mo-3Al-2.7Nb-0.2Si, J. Alloys Compd., 2019, 808, p 13

    Google Scholar 

  17. S. Long, Y.-F. Xia, J.-C. Hu, J.-S. Zhang, J. Zhou, P. Zhang, and M.-L. Cui, Hot Deformation Behavior and Microstructure Evolution of Ti-6Cr-5Mo-5V-4Al Alloy During Hot Compression, Vacuum, 2019, 160, p 171–180

    CAS  Google Scholar 

  18. G.-Z. Quan, J. Pan, and X. Wang, Prediction of the Hot Compressive Deformation Behavior for Superalloy Nimonic 80A by BP-ANN Model, Appl. Sci., 2016, 6(3), p 66

    Google Scholar 

  19. N.E.W. De Reca and C.M. Libanati, Self-Diffusion in Beta-Titanium And Beta-Hafnium, Acta Metallurgica, 1968, 16(10), p 1297–1305

    Google Scholar 

  20. J.F. Murdock, E.E. Stansbury, and T.S. Lundy, Diffusion of Ti44 + V48 in Titanium, Acta Metall., 1964, 12(9), p 1033

    Google Scholar 

  21. D.G. Robertson and H.B. McShane, Analysis Of High Temperature Flow Stress of Titanium ALLOYS IMI, 550 and Ti-10V-2Fe-3AI, during Isothermal Forging, Mater. Sci. Technol., 1998, 14(4), p 339–345

    CAS  Google Scholar 

  22. T. Sheppard and J. Norley, Deformation Characteristics of Ti-6Al-4V, Mater. Sci. Technol., 1988, 4(10), p 903–908

    CAS  Google Scholar 

  23. C.C. Chen and J.E. Coyne, Deformation Characteristics of Ti-6Al-4V Alloy under Isothermal Forging Conditions, Metall. Trans. A Phys. Metall. Mater. Sci., 1976, 7(12), p 1931–1941

    Google Scholar 

  24. Y.G. Ko, C.S. Lee, D.H. Shin, and S.L. Semiatin, Low-Temperature Superplasticity of Ultra-Fine-Grained Ti-6Al-4V Processed by Equal-Channel Angular Pressing, Metall. Mater. Trans. A, 2006, 37(2), p 381–391

    Google Scholar 

  25. T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad, Hot Working of Commercial Ti–6Al–4V with an Equiaxed α–β Microstructure: Materials Modeling Considerations, Mater. Sci. Eng. A, 2000, 284(1), p 184–194

    Google Scholar 

  26. Y.V.R.K. Prasad, T. Seshacharyulu, S.C. Medeiros, and W.G. Frazier, Microstructural Modeling and Process Control During Hot Working of Commercial Ti-6A1-4V Response of Lamellar and Equiaxed Starting Microstructures, Mater. Manuf. Processes, 2000, 15(4), p 581–604

    CAS  Google Scholar 

  27. R. Ding, Z.X. Guo, and A. Wilson, Microstructural Evolution of a Ti–6Al–4V Alloy during Thermomechanical Processing, Mater. Sci. Eng., A, 2002, 327(2), p 233–245

    Google Scholar 

  28. E. Alabort, P. Kontis, D. Barba, K. Dragnevski, and R.C. Reed, On the Mechanisms of Superplasticity in Ti-6Al-4V, Acta Mater., 2016, 105, p 449–463

    CAS  Google Scholar 

  29. H.Q. Liang, Y. Nan, Y.Q. Ning, H. Li, J.L. Zhang, Z.F. Shi, and H.Z. Guo, Correlation Between Strain-Rate Sensitivity and Dynamic Softening Behavior during Hot Processing, J. Alloys Compd., 2015, 632, p 478–485

    CAS  Google Scholar 

  30. J.C. Malas and V. Seetharaman, Using Material Behavior Models to Develop Process-Control Strategies, Jom-J. Miner. Met. Mater. Soc., 1992, 44(6), p 8–13

    CAS  Google Scholar 

  31. M. Long and H.J. Rack, Thermo-Mechanical Stability of Forged Ti-26Al-10Nb-3V-1Mo (at.%), Mater. Sci. Eng. A, 1995, 194(1), p 99–111

    Google Scholar 

  32. V.K. Novikov, II, and V.S. Portnoy, Levchenko, Investigation of Structural-Changes During Superplastic Deformation Of Zn-22 Percent Al-Alloy by Replica Locating Technique, Acta Metall., 1981, 29(6), p 1077–1090

    CAS  Google Scholar 

  33. R.Z. Valiev and T.G. Langdon, An Investigation of the Role of Intragranular Dislocation Strain in the Superplastic Pb-62-Percent Sn Eutectic Alloy, Acta Metall. Mater., 1993, 41(3), p 949–954

    CAS  Google Scholar 

  34. M. Motyka, J. Sieniawski, and W. Ziaja, Microstructural Aspects of Superplasticity in Ti–6Al–4V Alloy, Mater. Sci. Eng. A, 2014, 599, p 57–63

    CAS  Google Scholar 

  35. S. Long, Y.-F. Xia, P. Wang, Y.-T. Zhou, F.-J. Gong-ye, J. Zhou, J.-S. Zhang, and M.-L. Cui, Constitutive Modelling, Dynamic Globularization Behavior and Processing Map for Ti-6Cr-5Mo-5V-4Al Alloy during Hot Deformation, J. Alloys Compd., 2019, 796, p 65–76

    CAS  Google Scholar 

  36. Y. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of Dynamic Material Behavior in Hot Deformation—Forging of Ti-6242, Metall. Trans. A Phys. Metall. Mater. Sci., 1984, 15(10), p 1883–1892

    Google Scholar 

  37. S.V.S. Murty, B.N. Rao, and B.P. Kashyap, Development of a Processing Map for the Hot Working of Ti-25Al-15Nb, Z. Metallk., 2000, 91(9), p 769–774

    CAS  Google Scholar 

  38. J.J. Jonas, R.A. Holt, and C.E. Coleman, Plastic Stability in Tension and Compression, Acta Metall., 1976, 24(10), p 911–918

    Google Scholar 

  39. S.L. Semiatin, J.F. Thomas, and P. Dadras, Processing-Microstructure Relationships For Ti-6Al-2Sn-4Zr-2Mo-0.1Si, Metall. Trans. A Phys. Metall. Mater. Sci., 1983, 14(11), p 2363–2374

    Google Scholar 

  40. Y.B. Tan, J.L. Duan, L.H. Yang, W.C. Liu, J.W. Zhang, and R.P. Liu, Hot Deformation Behavior of Ti–20Zr–6.5Al–4V Alloy in the α + β and Single β Phase Field, Mater. Sci. Eng. A, 2014, 609, p 226–234

    CAS  Google Scholar 

  41. X. Li, S.Q. Lu, M.W. Fu, K.L. Wang, and X.J. Dong, The Optimal Determination of Forging Process Parameters for Ti–6.5Al–3.5Mo–1.5Zr–0.3Si Alloy with Thick Lamellar Microstructure in Two Phase Field Based on P-Map, J. Mater. Process. Technol., 2010, 210(2), p 370–377

    CAS  Google Scholar 

  42. H.J. McQueen and D.L. Bourell, Hot Workability of Metals and Alloys, J. Met., 1987, 39(9), p 28–35

    CAS  Google Scholar 

  43. I. Weiss, F.H. Froes, D. Eylon, and G.E. Welsch, Modification of Alpha Morphology in Ti-6AL-4V By Thermomechanical Processing, Metall. Trans. A Phys. Metall. Mater. Sci., 1986, 17(11), p 1935–1947

    Google Scholar 

  44. T. Seshacharyulu, S.C. Medeiros, J.T. Morgan, J.C. Malas, W.G. Frazier, and Y. Prasad, Hot Deformation Mechanisms in ELI, Grade Ti-6Al-4V, Scripta Mater., 1999, 41(3), p 283–288

    CAS  Google Scholar 

  45. X. Ma, W. Zeng, B. Xu, Y. Sun, C. Xue, and Y. Han, Characterization of the Hot Deformation Behavior of a Ti–22Al–25Nb Alloy Using Processing Maps Based on the Murty Criterion, Intermetallics, 2012, 20(1), p 1–7

    CAS  Google Scholar 

Download references

Acknowledgments

The author gratefully appreciates the financial support from the National Key Research and Development Program of China (No. 2018YFB1106504), Graduate Scientific Research and Innovation Foundation of Chongqing, China (No. CYB19005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Zhou, J., Shu, Q. et al. Deformation Mechanism and Constitutive Consideration for Ti-5Al-5Mo-5V-3Cr-1Zr Alloy Compressed at Elevated Temperatures. J. of Materi Eng and Perform 29, 5104–5113 (2020). https://doi.org/10.1007/s11665-020-04929-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04929-0

Keywords

Navigation