Skip to main content
Log in

Microstructural and Tribological Characteristics of In Situ Induced Chrome Carbide Strengthened CoCrFeMnNi High-Entropy Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Bulk (CoCrFeMnNi)100−xCx (x = 0, 0.2, 0.6, 0.8. 1.0. 1.2 wt.%) high-entropy alloys (HEAs) prepared via a discharge plasma sintering process were found to be composed of a simple FCC solid solution. With increasing C concentration, the grain of the HEAs transformed from columnar to equiaxial and the abundance of precipitated M7C3 and M23C6 phases increased. The valence state of Co, Fe, Mn, and Ni was not found to change with C concentration, but rather remained as a solid solution. The effects of chrome carbide concentration on the HEA microstructural and mechanical properties were investigated in detail. The hardness was nearly 1.5 times greater for HEAs containing 1.2 wt.% C than for HEAs without C. Wear rate, on the other hand, was found to first increase and then decrease with increasing C content. The best wear resistance, corresponding to a wear rate of 1.59 × 10−4 mm3 N−1 m−1, was obtained at a C concentration of 1.2 wt.%. The wear mechanisms of this material were dominated by adhesive wear, oxidative wear, and contact fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6, p 299–303

    Article  CAS  Google Scholar 

  2. J.W. Yeh, Recent Progress in High-Entropy Alloys, Eur. J. Control, 2006, 31, p 633–648

    CAS  Google Scholar 

  3. H. Zhang, Y. He, and Y. Pan, Enhanced Hardness and Fracture Toughness of the Laser-Solidified FeCoNiCrCuTiMoAlSiB0.5 High-Entropy Alloy by Martensite Strengthening, Scr. Mater., 2013, 69, p 342–345

    Article  CAS  Google Scholar 

  4. H. Zhang, Y. He, Y. Pan, and S. Guo, Thermally Stable Laser Cladded CoCrCuFeNi High-Entropy Alloy Coating with Low Stacking Fault Energy, J. Alloys Compd., 2014, 600, p 210–214

    Article  CAS  Google Scholar 

  5. M. Chen, X.H. Shi, H. Yang, P.K. Liaw, M.C. Gao, J.A. Hawk, and J.W. Qiao, Wear Behavior of Al0.6CoCrFeNi High-Entropy Alloys: Effect of Environments, J. Mater. Res., 2018, 33(19), p 3310–3320

    Article  CAS  Google Scholar 

  6. O.N. Senkov and S.L. Semiatin, Microstructure and Properties of a Refractory High-Entropy Alloy After Cold Working, J. Alloys Compd., 2015, 649, p 1110–1123

    Article  CAS  Google Scholar 

  7. O.N. Senkov, D. Isheim, D.N. Seidman, and A.L. Pilchak, Development of a Refractory High Entropy Superalloy, Entropy-Switz, 2016, 18, p 102–114

    Article  Google Scholar 

  8. A. Poulia, E. Georgatis, A. Lekatou, and A.E. Karantzalis, Microstructure and Wear Behavior of a Refractory High Entropy Alloy, Int. J. Refract. Met. H, 2016, 57, p 50–63

    Article  CAS  Google Scholar 

  9. J. Li, Y. Xiao, R. Zhu, and Y. Zhang, Corrosion and Serration Behaviors of TiZr0.5NbCr0.5VxMoy High Entropy Alloys in Aqueous Environments, Metals, 2014, 4, p 597–608

    Article  Google Scholar 

  10. J. Jayaraj, C. Thinaharan, S. Ningshen, C. Mallika, and U.K. Mudali, Corrosion Behavior and Surface Film Characterization of TaNbHfZrTi High Entropy Alloy in Aggressive Nitric Acid Medium, Intermetallics, 2017, 89, p 123–132

    Article  CAS  Google Scholar 

  11. L.M. Du, L.W. Lan, S. Zhu, H.J. Yang, X.H. Shi, P.K. Liaw, and J.W. Qiao, Effects of Temperature on the Tribological Behavior of Al0.25CoCrFeNi High-Entropy Alloy, J. Mater. Sci. Technol., 2019, 35, p 917–925

    Article  Google Scholar 

  12. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375–377, p 213–218

    Article  Google Scholar 

  13. N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, E.E. Oleynik, A.S. Tortika, and O.N. Senkov, Effect of V Content on Microstructure and Mechanical Properties of the CoCrFeMnNiVx High Entropy Alloys, J. Alloys Compd., 2014, 628, p 170–185

    Article  Google Scholar 

  14. L. Rogal, D. Kalita, A. Tarasek, P. Bobrowski, and F. Czerwinski, Effect of SiC Nano-Particles on Microstructure and Mechanical Properties of the CoCrFeMnNi High Entropy Alloy, J. Alloys Compd., 2017, 708, p 344–352

    Article  CAS  Google Scholar 

  15. J. Chen, Z.H. Yao, X.B. Wang, Y.K. Lu, X.H. Wang, Y. Liu, and X.H. Fan, Effect of C Content on Microstructure and Tensile Properties of As-Cast CoCrFeMnNi High Entropy Alloy, Mater. Chem. Phys., 2018, 210, p 136–145

    Article  CAS  Google Scholar 

  16. N.D. Stepanov, N.Y. Yurchenko, M.A. Tikhonovsky, and G.A. Salishchev, Effect of Carbon Content and Annealing on Structure and Hardness of the CoCrFeNiMn-Based High Entropy Alloys, J. Alloys Compd., 2016, 687, p 59–71

    Article  CAS  Google Scholar 

  17. Z. Wu, C.M. Parih, and H. Bei, Nano-Twin Mediated Plasticity in Carbon-Containing FeNiCoCrMn High Entropy Alloys, J. Alloys Compd., 2015, 647, p 815–822

    Article  CAS  Google Scholar 

  18. J. Joseph, N. Haghdadi, K. Shamlaye, P. Hodgson, and M. Barnett, The Sliding Wear Behaviour of CoCrFeMnNi and AlxCoCrFeNi High Entropy Alloys at Elevated Temperatures, Wear, 2019, 428–429, p 32–44

    Article  Google Scholar 

  19. M. Chen, L.W. Lan, X.H. Shi, H.J. Yang, M. Zhang, and J.W. Qiao, The Tribological Properties of Al0.6CoCrFeNi High-Entropy Alloy with the S Phase Precipitation at Elevated Temperature, J. Alloys Compd., 2019, 777, p 180–189

    Article  CAS  Google Scholar 

  20. X.L. Ji, H. Duan, H. Zhang, and J.J. Ma, Slurry Erosion Resistance of Laser Clad NiCoCrFeAl3 High-Entropy Alloy Coatings, Tribol. Trans., 2015, 58, p 1119–1123

    Article  CAS  Google Scholar 

  21. X.L. Ji, C.C. Ji, J.B. Cheng, Y.P. Shen, and S.Y. Tian, Erosive Wear Resistance Evaluation with the Hardness After Strain-Hardening and Its Application for a High-Entropy Alloy, Wear, 2018, 398–399, p 178–182

    Article  Google Scholar 

  22. J.B. Cheng, D. Liu, X.B. Liang, and Y.X. Chen, Evolution of Microstructure and Mechanical Properties of In Situ Synthesized TiC–TiB2/CoCrCuFeNi High Entropy Alloy Coatings, Surf. Coat. Technol., 2015, 281, p 109–116

    Article  CAS  Google Scholar 

  23. J.B. Cheng, Y. Feng, C. Yan, X.L. Hu, R.F. Li, and X.B. Ling, Development and Characterization of Al-Based Amorphous Coating, JOM, 2020, 72, p 745–753

    Article  CAS  Google Scholar 

  24. Q. Li, G. Wang, X.P. Song, L. Fan, W.T. Hu, F.R. Xiao, Q.X. Yang, M.Z. Ma, J.X. Zhang, and R.P. Liu, Ti50Cu23Ni20Sn7 Bulk Metallic Glasses Prepared by Mechanical Alloying and Spark-Plasma Sintering, J. Mater. Process. Technol., 2009, 209, p 3285–3288

    Article  CAS  Google Scholar 

  25. Z.Q. Fu, W.P. Chen, H.Q. Xiao, L.W. Zhou, D.Z. Zhu, and S.F. Yang, Fabrication and Properties of Nanocrystalline Co0.5FeNiCrTi0.5 High Entropy Alloy by MA-SPS Technique, Mater. Des., 2013, 44, p 535–539

    Article  CAS  Google Scholar 

  26. G.A. Salishchev, M.A. Tikhonovsky, D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, I.V. Kolodiy, A.S. Tortika, and O.N. Senkov, Effect of Mn and V on Structure and Mechanical Properties of High-Entropy Alloys Based on CoCrFeNi System, J. Alloys Compd., 2014, 591, p 11–21

    Article  CAS  Google Scholar 

  27. A. Takeuchi and A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element, Mater. Trans., 2005, 46, p 2817–2829

    Article  CAS  Google Scholar 

  28. C.M. Lin, H.H. Lai, J.C. Kuo, and W. Wu, Effect of Carbon Content on Solidification Behaviors and Morphological Characteristics of the Constituent Phases in Cr–Fe–C Alloys, Mater. Charact., 2011, 62, p 1124–1133

    Article  CAS  Google Scholar 

  29. Y.C. Su, Y.T. Guo, Z.L. Huang, Z.H. Zhang, G.Y. Li, J.S. Lian, and L.Q. Ren, Preparation and Corrosion Behaviors of Calcium Phosphate Conversion Coating on Magnesium Alloy, Surf. Coat. Technol., 2016, 307, p 99–108

    Article  CAS  Google Scholar 

  30. Z.Y. Zhou, L.G. Yu, Q.Y. Zheng, G.Z. Ma, S.B. Ye, C. Ding, and Z.Y. Piao, Wear Behavior of 7075-Aluminum After Ultrasonic-Assisted Surface Burnishing, J. Manuf. Process., 2020, 51, p 1–9

    Article  Google Scholar 

  31. I. Toda-Caraballo and P.E.J. Rivera-Diaz-del-Castillo, Modelling Solid Solution Hardening in High Entropy Alloys, Acta Mater., 2015, 85, p 14–23

    Article  CAS  Google Scholar 

  32. Z.Y. Piao, B.S. Xu, H.D. Wang, and X.X. Yu, Rolling Contact Fatigue Behavior of Thermal-Sprayed Coating: A Review, Crit. Rev. Solid State, 2019, 6, p 1–28

    Google Scholar 

  33. X.F. Li, Y.H. Feng, B. Liu, D.H. Yi, X.H. Yang, W.D. Zhang, G. Chen, Y. Liu, and P.K. Bai, Influence of NbC Particles on Microstructure and Mechanical Properties of AlCoCrFeNi High-Entropy Alloy Coatings Prepared by Laser Cladding, J. Alloys Compd., 2019, 788, p 485–494

    Article  CAS  Google Scholar 

  34. R. Liu and D.Y. Li, Modification of Archard’s Equation by Taking Account of Elastic/Pseudoelastic Properties of Materials, Wear, 2001, 251, p 956–964

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51775259), the Natural Science Foundation of Jiangsu Province (BE2018091), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. SJCX19-0496), the Qing Lan Project, Six Talent Peaks Project and 333 Project of Jiangsu Province, and the Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology (ASMA201704).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baosen Zhang or Zhangzhong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Zhang, B., Zhu, S. et al. Microstructural and Tribological Characteristics of In Situ Induced Chrome Carbide Strengthened CoCrFeMnNi High-Entropy Alloys. J. of Materi Eng and Perform 29, 3714–3722 (2020). https://doi.org/10.1007/s11665-020-04872-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04872-0

Keywords

Navigation