Skip to main content
Log in

Microstructure, Mechanical Properties and Residual Stress of Selective Laser Melted AlSi10Mg

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

AlSi10Mg processed by selective laser melting (SLM) is common in various industries because of its complex structure and high performance. The microstructure, residual stress and mechanical properties restrict its application, while they are affected by the scanning path type and preheating temperature. In this work, to investigate the properties of selective laser melted AlSi10Mg alloys and gain better performance results, the microstructure and mechanical tests are performed at several preheating temperatures based on the uniformity and chessboard scanning strategy. It is found that the selective laser melted AlSi10Mg parts fabricated in the chessboard scanning path have better mechanical properties than those fabricated in the uniformity scanning path. Furthermore, a higher preheating temperature can induce less residual stress due to the enhanced Al crystal faces. Finally, analyses of the microstructures, mechanical and residual stress provide a valuable suggestion that the combination of the range of preheating temperature and the scanning path can improve the performance of selective laser melted AlSi10Mg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. U. Tradowsky, J. White, R.M. Ward, N. Read, W. Reimers, and M.M. Attallah, Selective Laser Melting of AlSi10Mg: Influence of Post-processing on the Microstructural and Tensile Properties Development, Mater. Des., 2016, 105, p 212–222. https://doi.org/10.1016/j.matdes.2016.05.066

    Article  CAS  Google Scholar 

  2. L. Wang, X. Jiang, Y. Zhu, Z. Ding, X. Zhu, and J. Sun, Investigation of Performance and Residual Stress Generation of AlSi10Mg Processed by Selective Laser Melting, Adv. Mater. Sci. Eng., 2018, https://doi.org/10.1155/2018/7814039

    Article  Google Scholar 

  3. A. Kimura and T. Nakamoto, Thermal and Mechanical Properties of Commercial-Purity Aluminum Fabricated Using Selective Laser Melting, Mater. Trans., 2017, 66, p 167–173. https://doi.org/10.2320/matertrans.L-M2017809

    Article  Google Scholar 

  4. A. Popovich, V. Sufiiarov, I. Polozov, E. Borisov, D. Masaylo, and A. Orlov, Microstructure and Mechanical Properties of Additive Manufactured Copper Alloy, Mater. Lett., 2016, 179, p 38–41. https://doi.org/10.1016/j.matlet.2016.05.064

    Article  CAS  Google Scholar 

  5. Y. Zhang, L. Wu, X. Guo, S. Kane, Y. Deng, Y. Jung, J. Lee, and J. Zhang, Additive Manufacturing of Metallic Materials: A Review, J. Mater. Eng. Perform., 2018, 27, p 1–13. https://doi.org/10.1007/s11665-017-2747-y

    Article  CAS  Google Scholar 

  6. L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, and J.P. Kruth, A Study of The Microstructural Evolution During Selective Laser Melting of Ti-6Al-4V, Acta Mater., 2010, 58, p 3303–3312. https://doi.org/10.1016/j.actamat.2010.02.004

    Article  CAS  Google Scholar 

  7. J.P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers, Selective Laser Melting of Iron-Based Powder, J. Mater. Process. Technol., 2004, 149, p 616–622. https://doi.org/10.1016/j.jmatprotec.2003.11.051

    Article  CAS  Google Scholar 

  8. K. Kempen, L. Thijs, E. Yasa, M. Badrossamay, W. Verheecke, and J.P. Kruth. Process Optimization and Microstructural Analysis for Selective Laser Melting of AlSi10Mg. Solid Freeform Fabrication Symposium, Austin, TX, USA, 2011.

  9. D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, and J. Bültmann, High Power Selective Laser Melting (HP SLM) of Aluminum Parts, Phys. Procedia, 2011, 12, p 271–278. https://doi.org/10.1016/j.phpro.2011.03.035

    Article  CAS  Google Scholar 

  10. D. Gu, H. Wang, F. Chang, D. Dai, P. Yuan, Y. Hagedorn, and W. Meiners, Selective Laser Melting Additive Manufacturing of TiC/AlSi10Mg Bulk-Form Nanocomposites with Tailored Microstructures and Properties, Phys. Procedia, 2014, 56(56), p 108–116. https://doi.org/10.1016/j.phpro.2014.08.153

    Article  CAS  Google Scholar 

  11. Z. Chen, Z. Wei, P. Wei, S. Chen, B. Lu, J. Du, J. Li, and S. Zhang, Experimental Research on Selective Laser Melting AlSi10Mg Alloys: Process, Densification and Performance, J. Mater. Eng. Perform., 2017, 26, p 5897–5905. https://doi.org/10.1007/s11665-017-3044-5

    Article  CAS  Google Scholar 

  12. K. Kempen, L. Thijs, J.V. Humbeeck, and J.P. Kruth, Mechanical Properties of AlSi10Mg Produced by Selective Laser Melting, Phys. Procedia, 2012, 39, p 439–446. https://doi.org/10.1016/j.phpro.2012.10.059

    Article  CAS  Google Scholar 

  13. L. Thijs, K. Kempen, J.P. Kruth, and J.V. Humbeeck, Fine-Structured Aluminium Products with Controllable Texture by Selective Laser Melting of Pre-alloyed AlSi10Mg Powder, Acta Mater., 2013, 61(5), p 1809–1819. https://doi.org/10.1016/j.actamat.2012.11.052

    Article  CAS  Google Scholar 

  14. W. Li, S. Li, J. Liu, A. Zhang, Y. Zhou, Q. Wei, C. Yan, and Y. Shi, Effect of Heat Treatment on AlSi10Mg Alloy Fabricated by Selective Laser Melting: Microstructure Evolution, Mechanical Properties and Fracture Mechanism, Mater. Sci. Eng. A, 2016, 663, p 116–125. https://doi.org/10.1016/j.msea.2016.03.088

    Article  CAS  Google Scholar 

  15. N. Read, W. Wang, K. Essa, and M.M. Attallah, Selective Laser Melting of AlSi10Mg Alloy: Process Optimization and Mechanical Properties Development, Mater. Des., 2015, 65, p 417–424. https://doi.org/10.1016/j.matdes.2014.09.044

    Article  CAS  Google Scholar 

  16. L. Thijs, K. Kempen, J.P. Kruth, and J.V. Humbeeck, Fine-Structured Aluminium Products with Controllable Texture by Selective Laser Melting of Pre-alloyed AlSi10Mg Powder, Acta Mater., 2013, 61, p 1809–1819. https://doi.org/10.1016/j.actamat.2012.11.052

    Article  CAS  Google Scholar 

  17. P. Mercelis and J.P. Kruth, Residual Stresses in Selective Laser Sintering and Selective Laser Melting, Rapid Prototyp. J., 2006, 12, p 254–265. https://doi.org/10.1108/13552540610707013

    Article  Google Scholar 

  18. M. Zhang, C. Liu, X. Shi, X. Chen, C. Chen, J. Zuo, J. Lu, and S. Ma, Residual Stress, Defects and Grain Morphology of Ti-6Al-4V Alloy Produced by Ultrasonic Impact Treatment Assisted Selective Laser Melting, Appl. Sci., 2016, 6(11), p 304–310. https://doi.org/10.3390/app6110304

    Article  CAS  Google Scholar 

  19. J. Zhang, B. Song, Q. Wei, D. Bourell, and Y. Shi, A Review of Selective Laser Melting of Aluminum alloys: Processing, Microstructure, Property and Developing Trends, J. Mater. Process. Technol., 2019, 35, p 270–284. https://doi.org/10.1016/j.jmst.2018.09.004

    Article  Google Scholar 

  20. D. Gu and Y. Shen, Balling Phenomena in Direct Laser Sintering of Stainless Steel Powder: Metallurgical Mechanisms and Control Methods, Mater. Des., 2009, 30(8), p 2903–2910. https://doi.org/10.1016/j.matdes.2009.01.013

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of Shanghai Sailing Program (No. 18YF1418400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miaoxian Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, M., Ye, Y., Jiang, X. et al. Microstructure, Mechanical Properties and Residual Stress of Selective Laser Melted AlSi10Mg. J. of Materi Eng and Perform 28, 6753–6760 (2019). https://doi.org/10.1007/s11665-019-04423-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04423-2

Keywords

Navigation