Skip to main content
Log in

Comparative Corrosion Behavior of Five Different Microstructures of Rebar Steels in Simulated Concrete Pore Solution with and Without Chloride Addition

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present work discusses the effect of five different microstructures, coarse, fine and very fine ferrite–pearlite, martensite and tempered martensite, made by furnace cooling, air cooling, forced air-cooling, water quenching and tempering, respectively, of a rebar steel on its corrosion performance in freely aerated with and without chloride-contaminated simulated concrete pore solution using the dynamic polarization and electrochemical impedance spectroscopy. The corrosion performance of the steels with five different microstructures relates to the polarization resistance, protective ability of rusts and the extent of the galvanic attack. The corrosion rate of the steels has been found to be comparable in the simulated concrete pore (SCP) solution. However, in chloride-containing SCP solution, corrosion rate has been found to increase in the following sequence: forced air-cooled–air-cooled–quenched–furnace-cooled–tempered steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Lollini, M. Carsana, M. Gastaldi, and E. Redaelli, Corrosion Behaviour of Stainless Steel Reinforcement in Concrete, Corros. Rev., 2018, 1, p 1–16

    Google Scholar 

  2. O. Girčiene, M. Samulevičiene, V. Burokas, and R. Ramanauskas, Corrosion Behaviour of Phosphated Reinforcing Steel in Alkaline Media Contaminated with Chloride Ions, Chemija, 2008, 19, p 14–19

    Google Scholar 

  3. R.R. Hussain, J.K. Singh, A. Alhozaimy, A. Al-Negheimish, C. Bhattacharya, R.S. Pathania, and D.D.N. Singh, Effect of Reinforcing Bar Microstructure on Passive Film Exposed to Simulated Concrete Pore Solution, ACI, Mater. J., 2018, 115, p 181–190

    Google Scholar 

  4. S. Ahmad, Reinforcement Corrosion in Concrete Structures, Its Monitoring and Service Life Prediction—A Review, Cem. Concr. Compos., 2003, 25, p 459–471

    CAS  Google Scholar 

  5. K. Asami and M. Kikuchi, In-Depth Distribution of Rusts on a Plain Carbon Steel and Weathering Steels Exposed to Coastal–Industrial Atmosphere for 17 Years, Corros. Sci., 2003, 45, p 2671–2688

    CAS  Google Scholar 

  6. Q.C. Zhang, J.S. Wu, J.J. Wang, W.L. Zheng, J.G. Chen, and A.B. Li, Corrosion Behavior of Weathering Steel in Marine Atmosphere, Mater. Chem. Phys., 2002, 77, p 603–608

    Google Scholar 

  7. J.H. Wang, F.I. Wei, Y.S. Chang, and H.C. Shih, The Corrosion Mechanisms of Carbon Steel and Weathering Steel in SO2 Polluted Atmospheres, Mater. Chem. Phys., 1997, 47, p 1–8

    CAS  Google Scholar 

  8. S.K. Nandi, N.K. Tewary, J.K. Saha, and S.K. Ghosh, Microstructure, Mechanical Properties and Corrosion Performance of a Few TMT Rebars, Corros. Eng. Sci. Technol., 2016, 51, p 476–488

    CAS  Google Scholar 

  9. Y.Y. Chen, H.J. Tzeng, L.I. Wei, L.H. Wang, J.C. Oung, and H.C. Shih, Corrosion Resistance and Mechanical Properties of Low-Alloy Steels Under Atmospheric Conditions, Corros. Sci., 2005, 47, p 1001–1021

    CAS  Google Scholar 

  10. Q. Xu, K. Gao, W. Lv, and X. Pang, Effects of Alloyed Cr and Cu on the Corrosion Behavior of Low-Alloy Steel in a Simulated Groundwater Solution, Corros. Sci., 2016, 102, p 114–124

    CAS  Google Scholar 

  11. J. Guo, C. Shang, S. Yang, H. Guo, X. Wang, and X. He, Weather Resistance of Low Carbon High Performance Bridge Steel, Mater. Des., 2009, 30, p 129–134

    CAS  Google Scholar 

  12. J. Guo, S. Yang, C. Shang, Y. Wang, and X. He, Influence of Carbon Content and Microstructure on Corrosion Behaviour of Low Alloy Steels in a Cl-Containing Environment, Corros. Sci., 2008, 51, p 242–251

    Google Scholar 

  13. D. Clover, B. Kinsella, B. Pejcic, and R. De Marco, The Influence of Microstructure on the Corrosion Rate of Various Carbon Steels, J. Appl. Electrochem., 2005, 35, p 139–149

    CAS  Google Scholar 

  14. H.J. Cleary and N.D. Greene, Corrosion Properties of Iron and Steel, Corros. Sci., 1967, 7, p 821–831

    CAS  Google Scholar 

  15. H.J. Cleary and N.D. Greene, Electrochemical Properties of Fe and Steel, Corros. Sci., 1969, 9, p 3–13

    CAS  Google Scholar 

  16. M. Stern, The Effect of Alloying Elements in Iron on Hydrogen Over-Voltage and Corrosion Rate in Acid Environment, J. Electrochem. Soc., 1955, 102, p 663–668

    CAS  Google Scholar 

  17. D.N. Staicopolous, The Role of Cementite in the Acidic Corrosion of Steel, J. Electroanal. Soc., 1963, 110, p 1121–1124

    Google Scholar 

  18. X. Hao, J. Dong, I.I.N. Etim, J. Wei, and W. Ke, Sustained Effect of Remaining Cementite on the Corrosion Behavior of Ferrite-Pearlite Steel Under the Simulated Bottom Plate Environment of Cargo Oil Tank, Corros. Sci., 2016, 110, p 296–304

    CAS  Google Scholar 

  19. J. Sánchez, J. Fullea, C. Andrade, J.J. Gaitero, and A. Porro, AFM Study of the Early Corrosion of a High Strength Steel in a Diluted Sodium Chloride Solution, Corros. Sci., 2008, 50, p 1820–1824

    Google Scholar 

  20. W.J. Tomlinson and K. Giles, The Microstructures and Corrosion of a 0.79C Steel Tempered in the Range 100-700 °C, Corros. Sci., 1983, 23, p 1353–1359

    CAS  Google Scholar 

  21. A.P. Moon, S. Sangal, S. Layek, S. Giribaskar, and K. Mondal, Corrosion Behavior of High-Strength Bainitic Rail Steels, Metall. Mater. Trans. A, 2015, 46, p 1500–1518

    CAS  Google Scholar 

  22. S. Al-Hassan, B. Mishra, D.L. Olson, and M.M. Salama, Effect of Microstructure on Corrosion of Steels in Aqueous Solution Containing Carbon Dioxide, Corros. Eng. Sect., 1998, 54, p 480–491

    CAS  Google Scholar 

  23. L.R. Bhagavathi, G.P. Chaudhari, and S.K. Nath, Mechanical and Corrosion Behavior of Plain Low Carbon Dual-Phase Steels, Mater. Des., 2011, 32, p 433–440

    CAS  Google Scholar 

  24. O. Keleştemur and S. Yildiz, Effect of Various Dual-Phase Heat Treatments on the Corrosion Behavior of Reinforcing Steel Used in the Reinforced Concrete Structures, Constr. Build. Mater., 2009, 23, p 78–84

    Google Scholar 

  25. O. Keleştemur, M. Aksoy, and S. Yildiz, Corrosion Behavior of Tempered Dual-Phase Steel Embedded in Concrete, Int. J. Miner. Metall. Mater., 2009, 16, p 43–50

    Google Scholar 

  26. W.R. Osório, L.C. Peixoto, L.R. Garcia, and A. Garcia, Electrochemical Corrosion Response of a Low Carbon Heat Treated Steel in a NaCl Solution, Mater. Corros., 2009, 60, p 804–812

    Google Scholar 

  27. V.C. Igwemezie and J.E.O. Ovri, Investigation into the Effects of Microstructure on the Corrosion Susceptibility of Medium Carbon Steel, Int. J. Eng. Sci., 2013, 2, p 11

    Google Scholar 

  28. R.R. Hussain, A. Alhozaimy, A. Al-Negheimish, and D.D.N. Singh, Time-Dependent Variation of the Electrochemical Impedance for Thermo-Mechanically Treated Versus Plain Low Alloy Steel Rebars in Contact with Simulated Concrete Pore Solution, Constr. Build. Mater., 2014, 73, p 283–288

    Google Scholar 

  29. B. Li, Y. Huan, and W. Zhang, Passivation and Corrosion Behavior of P355 Carbon Steel in Simulated Concrete Pore Solution at pH 12.5 to 14, Int. J. Electrochem. Sci., 2017, 12, p 10402–10420

    CAS  Google Scholar 

  30. J.K. Singh and D.D.N. Singh, The Nature of Rusts and Corrosion Characteristics of Low Alloy and Plain Carbon Steels in Three Kinds of Concrete Pore Solution with Salinity and Different pH, Corros. Sci., 2012, 56, p 129–142

    CAS  Google Scholar 

  31. Y. Zhang and A. Poursaee, Passivation and Corrosion Behavior of Carbon Steel in Simulated Concrete Pore Solution Under Tensile and Compressive Stresses, J. Mater. Civ. Eng., 2015, 27, p 1–9

    Google Scholar 

  32. J. Shi, D. Ph, D. Wang, J. Ming, and W. Sun, Long-Term Electrochemical Behavior of Low-Alloy Steel in Simulated Concrete Pore Solution with Chlorides, J. Mater. Civ. Eng., 2018, 30, p 1–11

    Google Scholar 

  33. E. Zitrou, J. Nikolaou, P.E. Tsakiridis, and G.D. Papadimitriou, Atmospheric Corrosion of Steel Reinforcing Bars Produced by Various Manufacturing Processes, Constr. Build. Mater., 2007, 21, p 1161–1169

    Google Scholar 

  34. D. Trejo, P. Monteiro, G. Thomas, and X. Wang, Mechanical Properties and Corrosion Susceptibility of Dual-Phase Steel in Concrete, Cem. Concr. Res., 1994, 24, p 1245–1254

    CAS  Google Scholar 

  35. H.K.D.H. Bhadeshia, Materials Algorithms Project Program Library, Phase Transform. Group, Dep. Mater. Sci. Metall. Univ. Cambridge, Cambridge (2018) pp. 1–5. https://www.phasetrans.msm.cam.ac.uk/map/steel/programs/mucg46-b.html. Accessed 12 Feb 2019

  36. P. Ghods, O.B. Isgor, G. McRae, and T. Miller, The Effect of Concrete Pore Solution Composition on the Quality of Passive Oxide Films on Black Steel Reinforcement, Cem. Concr. Compos., 2009, 31, p 2–11

    CAS  Google Scholar 

  37. B.B. Hope et al., ACI 222R-01 Protection of Metals in Concrete Against Corrosion Reported by ACI Committee 222, 2010.

  38. ASTM G102, Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements, ASTM Int., 2008, G102-89, p 1–7

    Google Scholar 

  39. A.F. Betancur, F.R. Pérez, M.M. Correa, and C.A. Barrero, Quantitative Approach in Iron Oxides and Oxihydroxides by Vibrational Analysis, Opt. Pura Apl., 2012, 45, p 269–275

    Google Scholar 

  40. J. Aramendia, L. Gomez-Nubla, L. Bellot-Gurlet, K. Castro, C. Paris, P. Colomban, and J.M. Madariaga, Protective Ability Index Measurement Through Raman Quantification Imaging to Diagnose the Conservation State of Weathering Steel Structures, J. Raman Spectrosc., 2014, 45, p 1076–1084

    CAS  Google Scholar 

  41. G.E. Totten, Steel Heat Treatment Handbook, Second Edi, CRC Press, Taylor & Francis Group, 2006

    Google Scholar 

  42. ASTM C 876, Standard Test Method for Half-Cell Potentials of Uncoated Reinforcing Steel in Concrete, (1999) pp. 1–6.

  43. C.Q. Ye, R.G. Hu, S.G. Dong, X.J. Zhang, R.Q. Hou, R.G. Du, C.J. Lin, and J.S. Pan, EIS Analysis on Chloride-Induced Corrosion Behavior of Reinforcement Steel in Simulated Carbonated Concrete Pore Solutions, J. Electroanal. Chem., 2013, 688, p 275–281

    CAS  Google Scholar 

  44. J. Shi, W. Sun, J. Jiang, and Y. Zhang, Influence of Chloride Concentration and Pre-passivation on the Pitting Corrosion Resistance of Low-Alloy Reinforcing Steel in Simulated Concrete Pore Solution, Constr. Build. Mater., 2016, 111, p 805–813

    CAS  Google Scholar 

  45. M. Liu, X. Cheng, X. Li, C. Zhou, and H. Tan, Effect of Carbonation on the Electrochemical Behavior of Corrosion Resistance Low Alloy Steel Rebars in Cement Extract Solution, Constr. Build. Mater., 2017, 130, p 193–201

    CAS  Google Scholar 

  46. R. Balasubramaniam, A.V.R. Kumar, and P. Dillmann, Characterisation of Ancient Indian Iron, Curr. Sci., 2003, 85, p 1546–1555

    CAS  Google Scholar 

  47. M. Morcillo, R. Wolthuis, J. Alcántara, B. Chico, I. Díaz, and D. De La Fuente, SEM/Micro Raman, a Very Useful Technique for Characterizing the Morphologies of Rust Phases Formed on Carbon Steel in Atmospheric Exposures, Corrosion., 2016, 72, p 1044–1054

    CAS  Google Scholar 

  48. K.D. Ralston and N. Birbilis, Effect of Grain Size on Corrosion, Corrosion., 2010, 66, p 1–4

    Google Scholar 

  49. X.Y. Wang and D.Y. Li, Mechanical and Electrochemical Behavior of Nanocrystalline Surface of 304 Stainless Steel, Electrochim. Acta, 2002, 47, p 3939–3947

    CAS  Google Scholar 

  50. P.K. Katiyar, P.K. Behera, S. Misra, and K. Mondal, Effect of Microstructures on the Corrosion Behavior of Reinforcing Bars (Rebar) Embedded in Concrete, Metals Mater. Int, 2019, 25, p 1209–1226.

    CAS  Google Scholar 

  51. P.K. Katiyar, S. Misra, and K. Mondal, Comparative Corrosion Behavior of Five Microstructures (Pearlite, Bainite, Spheroidized, Martensite, and Tempered Martensite) Made from a High Carbon Steel, Metall. Mater. Trans. A, 2019, 50A, p 1489–1501

    Google Scholar 

  52. P.K. Katiyar, S. Misra, and K. Mondal, Effect of Different Cooling Rates on the Corrosion Behavior of High-Carbon Pearlitic Steel, J. Mater. Eng. Perform., 2018, 27, p 1753–1762

    CAS  Google Scholar 

  53. P.K. Katiyar, S. Misra, and K. Mondal, Corrosion Behavior of Annealed Steels with Different Carbon Contents (0.002% C, 0.17% C, 0.43% C, and 0.7% C) in Freely Aerated 3.5% NaCl Solution. J. Mater. Eng. Perform., 2019, 28, p 4041–4052.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mondal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katiyar, P.K., Behera, P.K., Misra, S. et al. Comparative Corrosion Behavior of Five Different Microstructures of Rebar Steels in Simulated Concrete Pore Solution with and Without Chloride Addition. J. of Materi Eng and Perform 28, 6275–6286 (2019). https://doi.org/10.1007/s11665-019-04339-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04339-x

Keywords

Navigation