Skip to main content
Log in

Influence of Salinity, Total Dissolved Solids, Conductivity, and pH on Corrosion Behavior of Different Morphologies of Pearlitic Steels

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The investigation discusses the influence of salinity, conductivity, total dissolved solids (TDS), and pH on the corrosion behavior of different morphologies of pearlitic steels with coarse, fine, and very fine microstructures obtained by furnace-annealed, air-cooled, and forced-air-cooled, respectively. Immersion test of the heat treated steels was carried out in freely aerated 3.5% NaCl solution for 28 days. The study also involves the effect of the water parameters on the composition, fraction, and morphology of corrosion products. Increase in cooling rate decreases the interlamellar spacings, and this refinement has resulted in higher corrosion resistance. The formation of large number of well-distributed microgalvanic cells between cementite and ferrite lamellae of the fine pearlitic air-cooled steel enhances the corrosion resistance. However, further refinement beyond a limit decreases the corrosion resistance due to the entanglement and breaking of cementite lamellae of the forced-air-cooled steel as compared to the air-cooled steel. Therefore, the air-cooled steel with fine pearlite shows better corrosion resistance than the furnace-annealed and forced-air-cooled steels. Generally, salinity and conductivity increase with a decrease in pH with time, whereas the increased TDS and protective index (α/γ*) as measured by the weight fraction of stable α-FeOOH over the other unstable γ-FeOOH and β-FeOOH have resulted in decreased corrosion susceptibility of the pearlitic steels irrespective of their interlamellar spacing between ferrite and cementite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Panda, R. Balasubramaniam and G. Dwivedi, On the Corrosion Behavior of Novel High Carbon Rail Steels in Simulated Cyclic Wet-Dry Salt Fog Conditions, Corros. Sci., 2008, 50, p 1684–1692.

    Article  CAS  Google Scholar 

  2. V. Rault, V. Vignal, H. Krawiec and O. Tadjoa, Corrosion Behavior of Heavily Deformed Pearlitic and Brass-Coated Pearlitic Steels in Sodium Chloride Solutions, Corros. Sci., 2014, 86, p 275–284.

    Article  CAS  Google Scholar 

  3. S.I. Al-rubaiey, E.A. Anoon and M.M. Hanoon, The Influence of Microstructure on the Corrosion Rate of Carbon Steels, Eng. Tech. Journal., 2013, 31, p 1–12.

    Google Scholar 

  4. G.P. Singh, A.P. Moon, S. Sengupta, G. Deo, S. Sangal and K. Mondal, Corrosion Behavior of IF Steel in Various Media and its Comparison with Mild Steel, J. Mater. Eng. Perform., 2015, 24, p 1961–1974.

    Article  CAS  Google Scholar 

  5. R. Balasubramaniam, B. Panda, G. Dwivedi, A.P. Moon, S. Mahapatra and A.K. Manuwal, Alloy Development of Corrosion-Resistant Rail Steel, Corros. Sci., 2011, 100, p 52–57.

    Google Scholar 

  6. I. Hlavaty, M. Sigmund, L. Krejci and P. Mohyla, The Bainitic Steels for Rail Applications, Mater. Eng., 2009, 16(4), p 44–50.

    Google Scholar 

  7. P.K. Katiyar, S. Misra and K. Mondal, Effect of Different Cooling Rates on the Corrosion Behavior of High-Carbon Pearlitic Steel, J. Mater. Eng. Perform., 2018, 27(4), p 1753.

    Article  CAS  Google Scholar 

  8. P.K. Katiyar, S. Misra and K. Mondal, Comparative Corrosion Behavior of Five Microstructures (Pearlite, Bainite, Spheroidized, Martensite, and Tempered Martensite) Made from a High Carbon Steel, Metall. Mater. Trans. A, 2019, 50, p 1489–1501.

    Article  CAS  Google Scholar 

  9. P.K. Katiyar, S. Misra and K. Mondal, Corrosion Behavior of Annealed Steels with Different Carbon Contents (0.002, 0.17, 0.43 And 0.7% C) in Freely Aerated 3.5% NaCl Solution, J. Mater. Eng. Perform., 2019, 28, p 4041–4052.

    Article  CAS  Google Scholar 

  10. D.N. Staicopolus, The Role of Cementite in the Acidic Corrosion of Steel, J. Electro. Soc., 1963, 110, p 1121–1124.

    Article  CAS  Google Scholar 

  11. S.A. Al-Fozan and A.U. Malik, Effect of Seawater Level on Corrosion Behavior of Different Alloys, Desalination, 2008, 228, p 61–67.

    Article  CAS  Google Scholar 

  12. S. Atashin, M. Pakshir and A. Yazdani, Comparative Studying of Marine Parameters’ Effect, via Qualitative Method, T. App. Sci. Res., 2010, 5(2), p 120–128.

    Google Scholar 

  13. S.F.E. Boerlage, Measuring Salinity and TDS of Seawater and Brine for Process and Environmental Monitoring-Which One, When?, Desalin. Water Treat., 2012, 42(1–3), p 222–230.

    Article  CAS  Google Scholar 

  14. R. Starosta, Influence of Seawater Salinity on Corrosion of Austenitic Steel, J. Kones Power. Trans., 2019, 26, p 3.

    Google Scholar 

  15. G. Priyotomo, L. Nuraini, S. Prifiharni and S. Sundjono, Corrosion Behavior of Mild Steel in Seawater from Karangsong & Eretan of West Java Region, Indonesia, J. Kelautan, 2018, 11, p 2.

    Google Scholar 

  16. W. Kirk and S. Pikul, Seawater Corrosivity Around The World: Results from Three Years of Testing, Corrosion in Natural Waters. C. Baloun Ed., West Conshohocken, ASTM International, 1990, p 2–36

    Chapter  Google Scholar 

  17. K. Zakowski, M. Narozny, M. Szocinski and K. Darowicki, Influence of Water Salinity on Corrosion Risk—The Case of the Southern Baltic Sea Coast, Environ. Monit. Assess, 2014, 186, p 4871–4879.

    Article  CAS  Google Scholar 

  18. F. Smith, F. Brownlie, T. Hodgkiess, A. Toumpis, A. Pearson and A.M. Galloway, Effect of Salinity on the Corrosive Wear Behaviour of Engineering Steels in Aqueous Solutions, Wear, 2020, 462–463, p 203515.

    Article  CAS  Google Scholar 

  19. S. Choudhary, A. Garg and K. Mondal, Relation Between Open Circuit Potential and Polarization Resistance with Rust and Corrosion Monitoring of Mild Steel, J. Mater. Eng. Perform., 2016, 25, p 2969–2976.

    Article  CAS  Google Scholar 

  20. T. Misawa, K. Asami, K. Hashimoto and S. Shimodaira, The Mechanism of Atmospheric Rusting and The Protective Amorphous Rust on Low Alloy Steel, Corros. Sci., 1974, 14, p 279–289.

    Article  CAS  Google Scholar 

  21. T. Kamimura, S. Hara, H. Miyuki, M. Yamashita and H. Uchida, Composition and Protective Ability of Rust Layer Formed on Weathering Steel Exposed to Various Environments, Corros. Sci., 2006, 48, p 2799–2812.

    Article  CAS  Google Scholar 

  22. P.K. Behera, P.K. Katiyar, S. Misra and K. Mondal, Effect of Pre-induced Plastic Strains on the Corrosion Behavior of Reinforcing Bar in 3.5 pct NaCl Solution, Metall. Mater. Trans. A, 2021, 52A, p 605.

    Article  Google Scholar 

  23. H. Bhadeshia, Materials Algorithm Project Program Library, Phase Transformation Group, Department of Materials Science and Metallurgy. (University of Cambridge, Cambridge, UK), https://www.phasetrans.msm.cam.ac.uk/map/steel/programs/mucg46-b.html

  24. W.C. Leslie, The physical metallurgy of steels, Hempisphere Pub. Corp., (1981)

  25. P.K. Behera, A.P.K. Moon, K. Mondal and S. Misra, Estimating Critical Corrosion for Initiation of Longitudinal Cracks in RC Structures Considering Phases and Composition of Corrosion Products, J. Mater. Civ. Eng., 2016, 28(12), p 04016158.

    Article  Google Scholar 

  26. A.P. Moon, S. Sangal, S. Layek, S. Giribaskar and K. Mondal, Corrosion Behavior of High-Strength Bainitic Rail Steels, Metall. Mater. Trans. A, 2015, 46A, p 1500–1518.

    Article  Google Scholar 

  27. H. Wu, H. Lei, Y.F. Chen and J. Qiao, Comparison on Corrosion Behaviour and Mechanical Properties of Structural Steel Exposed Between Urban Industrial Atmosphere and Laboratory Simulated Environment, Constr. Build. Mater., 2019, 211, p 228–243.

    Article  Google Scholar 

  28. B.Y.R. Surnam, C.W. Chui, H. Xiao and H. Liang, Investigating atmospheric corrosion behavior of carbon steel in coastal regions of Mauritius using Raman Spectroscopy, Rev. Mater., 2016, 21, p 151–168.

    Google Scholar 

  29. A. Raman, S. Nasrazadani and L. Sharma, Morphology of Rust Phases Formed on Weathering Steels in Various Laboratory Corrosion Tests, Metallography, 1989, 22, p 79–96.

    Article  CAS  Google Scholar 

  30. R.A. Antunes, I. Costa and D.L.A. de Faria, Characterization of Corrosion Products Formed on Steels in The First Months of Atmospheric Exposure, Mater. Res., 2003, 6, p 403.

    Article  CAS  Google Scholar 

  31. Ph. Dillmann, F. Mazaudier and S. Hoerle, Advances in Understanding Atmospheric Corrosion of Iron: I. Rust Characterisation of Ancient Ferrous Artefacts Exposed to Indoor Atmospheric Corrosion, Corros. Sci., 2004, 46(6), p 1401.

    Article  CAS  Google Scholar 

  32. S. Fonna, I.B.M. Ibrahim, S. Gunawarman, M. Huzni and S. Thalib. Ikhsan, Investigation of Corrosion Products Formed on the Surface of Carbon Steel Exposed in Banda Aceh’s Atmosphere, Heliyon, 2021, 7, p e06608.

    Article  CAS  Google Scholar 

  33. T.D. Marcotte and C.M. Hansson, Corrosion Products that Form on Steel within Cement Paste, Mater. Struct., 2007, 40(3), p 325–340.

    Article  CAS  Google Scholar 

  34. R. Balasubramaniam, A.V. Ramesh Kumar and P. Dillmann, Characterization of Rust on Ancient Indian Iron, Curr. Sci., 2003, 85, p 1546.

    CAS  Google Scholar 

  35. R. Balasubramaniam and A.V. Ramesh Kumar, Characterization of Delhi Iron Pillar Rust by X-Ray Diffraction, Fourier Transform Infrared Spectroscopy and Mossbauer Spectroscopy, Corros. Sci., 2000, 42, p 2085–2101.

    Article  CAS  Google Scholar 

  36. M. Morcillo, B. Chico, J. Alcantara, I. Diaz, R. Wolthuis and D. de la Fuente, SEM/Micro-Raman Characterisation of the Morphologies of Marine Atmospheric Corrosion Products Formed on Mild Steel, J. Electro. Soc., 2016, 163, p 426–439.

    Article  Google Scholar 

  37. Y. Waseda and S. Suzuki Eds., Characterization of Corrosion Products on Steel Surfaces, Springer, Berlin, 2006

    Google Scholar 

  38. C.Y. Da-Allada, G. Alory, Y. du Penhoat, E. Kestenare, F. Durand and N.M. Hounkonnou, Seasonal Mixed-Layer Salinity Balance in the Tropical Atlantic Ocean: Mean State and Seasonal Cycle, J. Geo. Res. Oceans, 2013, 118, p 332–345.

    Article  Google Scholar 

  39. A. Toloei, S. Atashin and M. Pakshir, Corrosion Rate of Carbon Steel Under Synergistic Effect of Seawater Parameters including pH, Temperature, and Salinity in Turbulent Condition, Corros. Rev., 2013, 31(3–6), p 135–144.

    Article  CAS  Google Scholar 

  40. G. Sundjono, L. Priyaotomo and S. Nuraini, Prifiharni, Corrosion Behaviour of Mild Steel in Seawater from Northern Coast of Java and Southern Coast of Bali, Indonesia, J. Eng. Technol. Sci., 2017, 49(6), p 770–784.

    Article  CAS  Google Scholar 

  41. M. Stratmann, K. Bohnenkamp and H.J. Engell, An Electrochemical Study of Phase-Transitions in Rust Layers, Corros. Sci., 1983, 23, p 969–985.

    Article  CAS  Google Scholar 

  42. M. Yamashita, H. Nagano, T. Misawa and H.E. Townsend, Structure of Protective Rust Layers Formed on Weathering Steels by Long-Term Exposure in the Industrial Atmospheres of Japan and North America, ISIJ Int., 1998, 38, p 285–290.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirtiratan Godbole.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godbole, K., Mondal, K. Influence of Salinity, Total Dissolved Solids, Conductivity, and pH on Corrosion Behavior of Different Morphologies of Pearlitic Steels. J. of Materi Eng and Perform 32, 875–885 (2023). https://doi.org/10.1007/s11665-022-07137-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07137-0

Keywords

Navigation