Skip to main content
Log in

Advancement solidification microstructure and mechanical properties of Sn–2.0Ag–0.5Cu alloy by applying a rotary magnetic field

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, for the first time, rotating magnetic field (RMF) was used to improve the solidification microstructure and mechanical properties of Sn–2.0Ag–0.5Cu (SAC205) solder alloy. Results revealed that the microstructure and tensile behaviour were improved. As observed, after applying RMF, grain size of β-Sn reduced to be ~ 10 μm which was decreased by ~ 60%. As well, an average size of IMCs formed in SAC205-B alloy were ~ 10–30 μm which were reduced by ~ 40–66%. Therefore, the growth rate of IMCs has been successfully suppressed with RMF. Interestingly, a decrease in grain size and IMCs thickness indicated the beneficial effect of applying RMF on the solder alloy. Consequently, in terms of tensile tests, SAC205 with RMF showed the highest strength over the entire temperatures and strain rates range. Moreover, UTS, YS, YM and El. % at room temperature (25 °C) of SAC205 alloy with RMF were ~ 9.0%, ~ 26.0%, ~ 8.0% and ~ 9.0% greater than that of RMF-free SAC205 alloy. Also, results showed that tensile strength of SAC205 alloy with and without RMF are remarkably sensitive to changes in both temperature and strain rate. Furthermore, the average stress exponent (n) and activation energy (Q) for RMF-free SAC205 and SAC205 with RMF solder alloys have been discussed. The obtained results should prove beneficial in the microelectronic packaging industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I. Abdullah, M.N. Zulkifli, A. Jalar, R. Ismail, M.A. Ambak, J. Electron. Mater. 48, 2826–2839 (2019)

    Article  CAS  Google Scholar 

  2. A.E. Hammad, Microelectron. Reliab. 87, 133–141 (2018)

    Article  CAS  Google Scholar 

  3. G. Zeng, S. McDonald, K. Nogita, Microelectron. Reliab. 52(7), 1306–1322 (2012)

    Article  CAS  Google Scholar 

  4. B. Ali, M.F.M. Sabri, S.M. Said, N.L. Sukiman, I. Jauhari, N. Soin, J. Mater. Sci.: Mater. Electron. 28, 7277–7285 (2017)

    CAS  Google Scholar 

  5. D.-H. Jung, A. Sharma, J.-P. Jung, J. Alloys Compd. 743, 300–313 (2018)

    Article  CAS  Google Scholar 

  6. H.M. Chen, J. Liao, S. Wu, L. Gong, J. Wang, H. Wang, J. Mater. Sci.: Mater. Electron. 29, 12662–12668 (2018)

    CAS  Google Scholar 

  7. D.A. Shnawah, M.F.M. Saberi, I.A. Badruddin, Microelectron. Reliab. 52(1), 90–99 (2012)

    Article  CAS  Google Scholar 

  8. A.M. Delhaise, Z. Chen, D.D. Perovic, JOM 71, 133–142 (2019)

    Article  CAS  Google Scholar 

  9. A.E. Hammad, Mater. Des. 52, 663–670 (2013)

    Article  CAS  Google Scholar 

  10. K. Maslinda, A.S. Anasyida, M.S. Nurulakmal, J. Mater. Sci.: Mater. Electron. 27, 489–502 (2016)

    CAS  Google Scholar 

  11. C.K. Chung, T.C. Huang, R. Shia, T.L. Yang, C.R. Kao, J. Alloys Compd. 539, 57–62 (2012)

    Article  CAS  Google Scholar 

  12. K. Kanlayasiri, M. Mongkolwongrojn, T. Ariga, J. Alloys Compd. 485, 225–230 (2009)

    Article  CAS  Google Scholar 

  13. H. Fallahi, M.S. Nurulakmal, A.F. Arezodar, J. Abdullah, Mater. Sci. Eng. A 553, 22–31 (2012)

    Article  CAS  Google Scholar 

  14. A.M. Erer, S. Oguz, Y. Türen, Eng. Sci. Technol. Int. J. 21, 1159–1163 (2018)

    Article  Google Scholar 

  15. A. Kantarcıoğlu, Y.E. Kalay, Mater. Sci. Eng. A 593, 79–84 (2014)

    Article  CAS  Google Scholar 

  16. B. Ali, M.F.M. Sabri, S.M. Said, N.L. Sukiman, I. Jauhari, M.H. Mahdavifar, Microelectron. Reliab. 82, 171–178 (2018)

    Article  CAS  Google Scholar 

  17. S. Xu, A. Prasitthipayong, A.D. Pickel, A.H. Habib, M.E. McHenry, Appl. Phys. Lett. 102, 251909 (2013)

    Article  CAS  Google Scholar 

  18. M. Aamir, R. Muhammad, N. Ahmed, M. Waqas, Microelectron. Reliab. 78, 311–318 (2017)

    Article  CAS  Google Scholar 

  19. M.N. Bashir, A.S.M.A. Haseeb, J. Mater. Sci.: Mater. Electron. 29, 3182–3188 (2018)

    CAS  Google Scholar 

  20. A.E. Hammad, A.A. Ibrahiem, Microelectron. Reliab. 75, 187–194 (2017)

    Article  CAS  Google Scholar 

  21. A.E. Hammad, Mater. Des. 50, 108–116 (2013)

    Article  CAS  Google Scholar 

  22. Y.H. Zhang, D. Räbiger, S. Eckert, J. Mater. Sci. 51, 2153–2159 (2016)

    Article  CAS  Google Scholar 

  23. I. Tzanakis, G.S.B. Lebon, D.G. Eskin, K. Pericleous, Mater. Des. 90, 979–983 (2016)

    Article  CAS  Google Scholar 

  24. J. Zeng, W. Chena, W. Yan, Y. Yang, A. McLean, Mater. Des. 108, 364–373 (2016)

    Article  CAS  Google Scholar 

  25. A.A. El-Daly, A.A. Ibrahiem, A.E. Hammad, J. Alloys Compd. 767, 464–473 (2018)

    Article  CAS  Google Scholar 

  26. A.A. El-Daly, A.A. Ibrahiem, J. Alloys Compd. 730, 47–56 (2018)

    Article  CAS  Google Scholar 

  27. A.A. El-Daly, A.E. Hammad, Mater. Des. 40, 292–298 (2012)

    Article  CAS  Google Scholar 

  28. G. Saad, S.A. Fayek, A. Fawzy, H.N. Soliman, G. Mohammed, Mater. Sci. Eng. A 527, 904–910 (2010)

    Article  CAS  Google Scholar 

  29. R.K. Kaushik, U. Batra, J.D. Sharma, J. Alloys Compd. 745, 446–454 (2018)

    Article  CAS  Google Scholar 

  30. C.W. See, M.Z. Yahaya, H. Haliman, A.A. Mohamad, Procedia Chem. 19, 847–854 (2016)

    Article  CAS  Google Scholar 

  31. A.A. El-Daly, A.M. El-Taher, S. Gouda, J. Alloys Compd. 65, 796–805 (2015)

    CAS  Google Scholar 

  32. E. Gebhardt, G. Petzow, Z. Metallkd. 50, 597–605 (1959)

    CAS  Google Scholar 

  33. C.M.L. Wu, D.Q. Yu, C.M.T. Law, L. Wang, Mater. Sci. Eng. R 44, 1–44 (2004)

    Article  CAS  Google Scholar 

  34. B. Ali, M.F.M. Sabri, I. Jauhari, N.L. Sukiman, Microelectron. Reliab. 63, 224–230 (2016)

    Article  CAS  Google Scholar 

  35. L.C. Tsao, Mat. Sci. Eng. A 529, 41–48 (2011)

    Article  CAS  Google Scholar 

  36. R.W. Armstrong, Acta Mech. 225, 1013–1028 (2014)

    Article  Google Scholar 

  37. C.W. Chang, K.L. Lin, J. Electron. Mater. 48, 135–141 (2019)

    Article  CAS  Google Scholar 

  38. L. Xu, X. Chen, H. Jing, L. Wang, J. Wei, Y. Han, Mat. Sci. Eng. A 667, 87–96 (2016)

    Article  CAS  Google Scholar 

  39. H.Y. Song, Q.S. Zhu, Z.G. Wang, J.K. Shang, M. Lu, Mater. Sci. Eng. A 527, 1343–1350 (2010)

    Article  CAS  Google Scholar 

  40. A.E. Hammad, A.M. El-Taher, J. Electron. Mater. 43, 4146–4157 (2014)

    Article  CAS  Google Scholar 

  41. F.X. Che, W.H. Zhu, E.S.W. Poh, X.W. Zhang, X.R. Zhang, J. Alloys Compd. 507, 215–224 (2010)

    Article  CAS  Google Scholar 

  42. W.H. Zhu, L.H. Xu, J.H.L. Pang, X.R. Zhang, E. Poh, Y.F. Sun, A.Y.S. Sun, C.K. Wang, H.B. Tan, Proc. Elect. Components Techn. Conf. 1667–1672 (2008)

  43. R. Mahmudi, A.R. Geranmayeh, H. Khanbareh, N. Jahangiri, Mater. Des. 30, 574–580 (2009)

    Article  CAS  Google Scholar 

  44. M.D. Mathew, S. Mova, H. Yang, K.L. Murty, Creep Behavior of Advanced Materials for the 21st Century (TMS, Warrendale, 1999), pp. 51–59

    Google Scholar 

  45. Q.S. Zhu, Z.G. Wang, S.D. Wu, J.K. Shang, Mater. Sci. Eng. A 502, 153–158 (2009)

    Article  CAS  Google Scholar 

  46. S. Hotta, K. Matsumoto, T. Murakami, T. Narushima, C. Ouchi, Mater. Trans. 48, 2665–2673 (2007)

    Article  CAS  Google Scholar 

  47. R.J. McCabe, M.E. Fine, Metal. Mater. Trans. A 33A, 1531–1539 (2002)

    Article  CAS  Google Scholar 

  48. I. Shohji, T. Yoshida, T. Takahashi, S. Hioki, Mater. Sci. Eng. A 366, 50–55 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Hammad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammad, A.E., Ragab, M. Advancement solidification microstructure and mechanical properties of Sn–2.0Ag–0.5Cu alloy by applying a rotary magnetic field. J Mater Sci: Mater Electron 30, 18838–18847 (2019). https://doi.org/10.1007/s10854-019-02240-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02240-w

Navigation