Skip to main content
Log in

Microstructure Evolution of Ultra-Fine-Grained AZ31 B Magnesium Alloy Produced by Submerged Friction Stir Processing

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Ten-millimeter-thick strain-hardened AZ31B-H24 magnesium sheets were subjected to friction stir processing (FSP) in air and submerged friction stir processing (SFSP) under water to investigate their microstructures and microhardness properties. Different rotational speeds of 500, 630, 800, and 1000 rpm and traverse speeds of 50, 100, 200, and 350 mm/min were employed for processing the materials. For SFSPed samples, the rotational speed of 500 rpm and 200 mm/min of traverse speed resulted in an ultra-fine-grained structure with a minimum grain size of about 400-500 nm, which is half compared to that of FSPed. It was found that both processes led to variation of crystallographic orientation, and enhancing the rotational speed and lowering the traverse speed promoted the development of a {0002} basal texture. The microhardness of SFSPed material increased significantly up to 110% (~ 95 Hv), while the microhardness was 45% (~ 65 Hv) higher than the base metal (~ 45 Hv) for FSPed material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.H. Chowdhury, D.L. Chen, S.D. Bhole, X. Cao, and P. Wanjara, Friction Stir Welded AZ31 Magnesium Alloy: Microstructure, Texture, and Tensile Properties, Metall. Mater. Trans. A, 2013, 44(A), p 323–336

    Article  Google Scholar 

  2. Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi, Nanocrystallized Magnesium Alloy—Uniform Dispersion of C60 Molecules, Scr. Mater., 2006, 55, p 1067–1070

    Article  Google Scholar 

  3. C.J. Lee and J.C. Huang, High Strain Rate Super Plasticity of Mg Based Composites Fabricated by Friction Stir Processing, Mater. Trans., 2006, 47, p 2773–2778

    Article  Google Scholar 

  4. T.A. Samman and G. Gottstein, Dynamic Recrystallization During High Temperature Deformation of Magnesium, Mater. Sci. Eng. A, 2008, 490, p 411–420

    Article  Google Scholar 

  5. J.Q. Su, T.W. Nelson, and C.J. Sterling, Friction Stir Processing of Large-Area Bulk UFG Aluminum Alloys, Scr. Mater., 2005, 52, p 135–140

    Article  Google Scholar 

  6. H.S. Arewal, H.S. Singh, S. Singh, B.K. Dhindaw, D. McPhail, B. Shollock, R. Chater, and S. Mukherjee, Microstructure-Property Relationship for Friction Stir Processed Magnesium Alloy, Adv. Eng. Mater., 2014, 16(1), p 94–102

    Article  Google Scholar 

  7. B. Mansoor and A.K. Ghosh, Microstructure and Tensile Behavior of a Friction Stir Processed Magnesium Alloy, Acta Mater., 2012, 60(13–14), p 5079–5088

    Article  Google Scholar 

  8. C.W. Yang, Effect of Friction Stir Processing on the Microstructural Evolution and Tensile Behaviors of an α/β Dual-Phase Mg-Li-Al-Zn Alloy, Mater. Trans., 2014, 55(2), p 371–377

    Article  Google Scholar 

  9. J. Chen, H. Fujii, Y. Sun, Y. Morisada, and R. Ueji, Fine Grained Mg-3Al-1Zn Alloy with Randomized Texture in the Double-Sided Friction Stir Welded Joints, Mater. Sci. Eng. A, 2013, 580, p 83–91

    Article  Google Scholar 

  10. R. Xin, D. Liu, B. Li, L. Sun, Z. Zhou, and Q. Liu, Mechanisms of Fracture and Inhomogeneous Deformation on Transverse Tensile Test of Friction-Stir-Processed AZ31 Mg Alloy, Mater. Sci. Eng. A, 2013, 565, p 333–341

    Article  Google Scholar 

  11. B.M. Darras, M.K. Khraisheh, F.K. Abu-Farha, and M.A. Omar, Friction Stir Processing of Commercial AZ31 Magnesium Alloy, J. Mater. Process. Technol., 2007, 191, p 77–81

    Article  Google Scholar 

  12. C.I. Chang, X.H. Du, and J.C. Huang, Achieving Ultrafine Grain Size in Mg-Al-Zn Alloy by Friction Stir Processing, Scr. Mater., 2007, 57, p 209–212

    Article  Google Scholar 

  13. H. Zhang and H. Liu, Characteristics and Formation Mechanisms of Welding Defects in Underwater Friction Stir Welded Aluminum Alloy, Metall. Microsc. Anal., 2012, 1, p 269–281

    Google Scholar 

  14. M.A. Wahid, Z.A. Khan, and A.N. Siddiquee, Review on Underwater Friction Stir Welding: A Variant of Friction Stir Welding with Great Potential of Improving Joint Properties, Trans. Nonferrous Met. Soc. China, 2018, 28, p 193–219

    Article  Google Scholar 

  15. N. Bhadouria, L. Thakur, P. Kumar, and N. Arora, An Investigation of Normal and Submerged Condition on Microstructural and Tribological Properties of Friction Stir Processed AZ91-D Magnesium Alloy, Can. J. Metall. Mater. Sci., Can. Metall. Q., 2017, 56, p 94–103

    Google Scholar 

  16. G. Cao and D. Zhang, Microstructure and Mechanical Properties of Submerged Friction Stir Processing Mg-Y-Nd Alloy, Mater. Sci. Forum, 2015, 816, p 404–410

    Article  Google Scholar 

  17. S. Benavides, Y. Li, L.E. Murr, D. Brown, and J.C. Mcclurr, Low-Temperature Friction-Stir Welding of 2024 Aluminum, Scr. Mater., 1999, 41, p 809–815

    Article  Google Scholar 

  18. K.S. Wang, J.L. Wu, W. Wang, L.H. Zhou, Z.X. Lin, and L. Kong, Underwater Friction Stir Welding of Ultrafine Grained 2017 Aluminum Alloy, J. Cent. South Univ., 2012, 19(8), p 2081–2085

    Article  Google Scholar 

  19. X. Feng, H. Liu, and J.C. Lippold, Microstructure Characterization of the Stir Zone of Submerged Friction Stir Processed Aluminum Alloy 2219, Mater. Charact., 2013, 82, p 97–102

    Article  Google Scholar 

  20. M.A. Mofid, A. Abdollah-Zadeh, F. Malek Ghaini, and C. Hakan Gur, Submerged Friction-Stir Welding (SFSW) Underwater and Under Liquid Nitrogen: An Improved Method to Join Al Alloys to Mg Alloys, Metall. Mater. Trans. A, 2012, 43(13), p 5106–5114

    Article  Google Scholar 

  21. B. Darras and E. Kishta, Submerged Friction Stir Processing of AZ31 Magnesium Alloy, Mater. Des., 2013, 47, p 133–137

    Article  Google Scholar 

  22. F. Chai, D. Zhang, and Y. Li, Microstructures and Tensile Properties of Submerged Friction Stir Processed AZ91 Magnesium Alloy, J. Magn. Alloys, 2015, 3, p 203–209

    Article  Google Scholar 

  23. G.K. Padhy, C.S. Wu, and S. Gao, Friction Stir Based Welding and Processing Technologies-Processes, Parameters, Microstructures and Applications: A Review, Mater. Sci. Technol., 2018, 34, p 1–38

    Article  Google Scholar 

  24. M.J. Zehetbauer and Y.T. Zhu, Ed., Bulk Nanostructured Materials, Wiley, Weinheim, 2009

    Google Scholar 

  25. J.C. Huang, I.C. Hsiao, T.D. Wang, and B.Y. Lou, EBSD Study on Grain Boundary Characteristics in Fine-Grained Al Alloys, Scr. Mater., 2000, 43, p 213–217

    Article  Google Scholar 

  26. A.J. Ardell, Precipitation Hardening, Metall. Trans. A, 1985, 16, p 2131–2165

    Article  Google Scholar 

  27. C.G. Rhodes, M.W. Mahoney, W.H. Bingel, and M. Calabrese, Fine-Grain Evolution in Friction-Stir Processed 7050 Aluminum, Scr. Mater., 2003, 48, p 1451–1455

    Article  Google Scholar 

  28. Y.N. Wang, C.I. Chang, C.J. Lee, H.K. Lin, and J.C. Huang, Texture and Weak Grain Size Dependence in Friction Stir Processed Mg-Al-Zn Alloy, Scr. Mater., 2006, 55, p 637–640

    Article  Google Scholar 

  29. S. Goel, G. Naveen, A. Gupta, and P. Gulati, Effect of Process Parameters on Mechanical and Metallurgical Properties of Friction Stir Processed AZ31 Mg Alloy, Mater. Today Proc., 2018, 5, p 4575–4583

    Article  Google Scholar 

  30. W.Y. Li, T. Fu, L. Hütsch, J. Hilgert, F.F. Wang, J.F. dos Santos, and N. Huber, Effects of Tool Rotational and Welding Speed on Microstructure and Mechanical Properties of Bobbin-Tool Friction-Stir Welded Mg AZ31, Mater. Des., 2014, 64, p 714–720

    Article  Google Scholar 

  31. Y.N. Wang and J.C. Huang, Transition of Dominant Diffusion Process During Superplastic Deformation in AZ61 Magnesium Alloys, Metall. Mater. Trans. A, 2002, 35(2), p 555–562

    Article  Google Scholar 

  32. C.I. Chang, C.J. Lee, and J.C. Hung, Relationship Between Grain Size and Zener–Holloman Parameter During Friction Stir Processing in AZ31 Mg Alloys, Scr. Mater., 2004, 51, p 509–514

    Article  Google Scholar 

  33. M. Jones, P. Heurtier, C. Desrayaud, F. Montheillet, D. Allehaux, and J. Driver, Correlation Between Microstructure and Microhardness in a Friction Stir Welded 2024 Aluminium Alloy, Scr. Mater., 2005, 52, p 693–697

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fathallah Karimzadeh or Seyedeh Narjes Hosseini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahnam, A., Karimzadeh, F., Golozar, M.A. et al. Microstructure Evolution of Ultra-Fine-Grained AZ31 B Magnesium Alloy Produced by Submerged Friction Stir Processing. J. of Materi Eng and Perform 28, 4593–4601 (2019). https://doi.org/10.1007/s11665-019-04198-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04198-6

Keywords

Navigation