Skip to main content

Advertisement

Log in

Room-Temperature Microstructural Evolution of Extruded AM80 Magnesium Alloys under Dynamic Loading

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Dynamic compression tests were conducted using a split Hopkinson pressure bar along the transverse direction at strain rates (SRs) of 3200 and 6000 s−1. The initial microstructure significantly affected the flow stress behavior and microstructural evolution of the two studied AM80 magnesium alloys. Under the same SR loading, the as-extruded alloy exhibited an apparently higher flow stress. At a SR of 6000 s−1, the flow stress of the as-extruded alloy exhibited a visible decrease (~ 34 MPa) as the strain increased to ~ 0.2, whereas a constant flow stress was exhibited by the solution-treated alloy. High-density dislocations and mechanical twins were detected in the two alloys at a SR of 3200 s−1. Interestingly, dynamic recrystallization (DRX) with an average grain size of ~ 2 µm was only identified in the as-extruded alloy as the applied SR increased to 6000 s−1. The increased localized deformation in the as-extruded alloy due to the retained strain energy and high critical twinning stress improved the DRX driving force, thereby resulting in visibly different micrographs of the two alloys when impacted at the SR of 6000 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, and R.H. Wagoner, Hardening Evolution of AZ31B Mg Sheet, Int. J. Plasticity, 2007, 23, p 44–86

    Article  Google Scholar 

  2. I. Ulacia, C.P. Salisbury, I. Hurtado, and M.J. Worswick, Tensile Characterization and Constitutive Modeling of AZ31B Magnesium Alloy Sheet over Wide Range of Strain Rates and Temperatures, J. Mater. Process. Tech., 2011, 211, p 830–839

    Article  Google Scholar 

  3. X. Liu, J.J. Jonas, L.X. Li, and B.W. Zhu, Flow Softening, Twinning and Dynamic Recrystallization in AZ31 Magnesium, Mater. Sci. Eng. A, 2013, 583, p 242–253

    Article  Google Scholar 

  4. L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev, and S. Godet, Influence of 10–12 Extension Twinning on the Flow Behavior of AZ31Mg Alloy, Mater. Sci. Eng. A, 2007, 445(6), p 302–309

    Article  Google Scholar 

  5. S.I. Lee, J.S. Kim, S.J. Park, S.H. Park, and J. Yoon, Evolution of Tension and Compression Asymmetry of Extruded Mg–Al–Sn–Zn Alloy with Respect to Forming Temperatures, Mater. Des., 2016, 110, p 510–518

    Article  Google Scholar 

  6. J. He, B. Jiang, H. Xie, Z. Jiang, B. Liu, and F. Pan, Improved Tension–Compression Performance of Mg–Al–Zn Alloy Processed by Co-extrusion, Mater. Sci. Eng. A, 2016, 675, p 76–81

    Article  Google Scholar 

  7. Y. Suyuan, The Microstructure Features and the Deformation Mechanism of a Fine-Grained Magnesium Alloy under Dynamic Loading, Rev. Adv. Mater. Sci., 2010, 25(2), p 122–127

    Google Scholar 

  8. I.R. Ahmad and D.W. Shu, Compressive and Constitutive Analysis of AZ31B Magnesium Alloy over a Wide Range of Strain Rates, Met. Mater. Int., 2015, 592(5), p 40–49

    Google Scholar 

  9. N.V. Dudamell, I. Ulacia, F. Gálvez, S. Yi, J. Bohlen, D. Letzig, I. Hurtado, and M.T. Pérez-Prado, Twinning and Grain Subdivision During Dynamic Deformation of a Mg AZ31 Sheet Alloy at Room Temperature, Acta Mater., 2011, 59(18), p 6949–6962

    Article  Google Scholar 

  10. I.R. Ahmad, M. Syfiqu, X. Jing, and D.W. Shu, Strain Rate Effect on Microstructure of Dynamically Compressed Magnesium Alloy AZ31B, Key Eng. Mater., 2013, 535–536, p 137–140

    Article  Google Scholar 

  11. P. Mao, Z. Liu, and C. Wang, Texture Effect on High Strain Rates Tension and Compression Deformation Behavior of Extruded AM30 Alloy, Mater. Sci. Eng. A, 2012, 539, p 13–21

    Article  Google Scholar 

  12. F. Feng, S. Huang, Z. Meng, J. Hu, Y. Lei, M. Zhou, D. Wu, and Z. Yang, Experimental Study on Tensile Property of AZ31B Magnesium Alloy at Different High Strain Rates and Temperatures, Mater. Des., 2014, 57(5), p 10–20

    Article  Google Scholar 

  13. G. Wan, B.L. Wu, Y.H. Zhao, Y.D. Zhang, and C. Esling, Strain-Rate Sensitivity of Textured Mg–3.0 Al–1.0 Zn Alloy (AZ31) under Impact Deformation, Scr. Mater., 2011, 65(6), p 461–464

    Article  Google Scholar 

  14. G. Wan, B.L. Wu, Y.D. Zhang, G.Y. Sha, and C. Esling, Anisotropy of Dynamic Behavior of Extruded AZ31 Magnesium Alloy, Mater. Sci. Eng. A, 2010, 527(12), p 2915–2924

    Article  Google Scholar 

  15. I.R. Ahmad and D.W. Shu, Anisotropic Behaviour of AZ31B Sheet at High Strain Rates, Appl. Mech. Mater., 2012, 151, p 726–730

    Article  Google Scholar 

  16. M.T. Tucker, M.F. Horstemeyer, P.M. Gullett, H. El-Kadiri, and W.R. Whittington, Anisotropic Effects on the Strain Rate Dependence of a Wrought Magnesium Alloy, Scr. Mater., 2009, 60(3), p 182–185

    Article  Google Scholar 

  17. E. El-Magd and M. Abouridouane, Characterization, Modelling and Simulation of Deformation and Fracture Behavior of the Light-Weight Wrought Alloys under High Strain Rate Loading, Int. J. Impact Eng., 2006, 32, p 741–758

    Article  Google Scholar 

  18. D. Rittel and Z.G. Wang, Thermo-mechanical Aspects of Adiabatic Shear Failure of AM50 and Ti6Al4V Alloys, Mech. Mater., 2008, 40(8), p 629–635

    Article  Google Scholar 

  19. N.V. Dudamell, I. Ulacia, and F. Galvez, Influence of Texture on the Recrystallization Mechanisms in an AZ31Mg Sheet Alloy at Dynamic Rates, Mater. Sci. Eng. A, 2012, 532, p 528–535

    Google Scholar 

  20. H. Asgari, J.A. Szpunar, and A.G. Odeshi, Texture Evolution and Dynamic Mechanical Behavior of Cast AZ Magnesium Alloys under High Strain Rate Compressive Loading, Mater. Des., 2014, 61(61), p 26–34

    Article  Google Scholar 

  21. I. Ulacia, N.V. Dudamell, F. Gálvez, S. Yi, M.T. Pérez-Prado, and I. Hurtado, Mechanical Behavior and Microstructural Evolution of a Mg AZ31 Sheet at Dynamic Strain Rates, Acta Mater., 2010, 58(8), p 2988–2998

    Article  Google Scholar 

  22. Q. Xie, Z. Zhu, G. Kang, and C. Yu, Crystal Plasticity-Based Impact Dynamic Constitutive Model of Magnesium Alloy, Int. J. Mech. Sci., 2016, 119, p 107–113

    Article  Google Scholar 

  23. L. Li, O. Muránsky, E.A. Flores-Johnson, S. Kabra, L. Shen, and G. Proust, Effects of Strain Rate on the Microstructure Evolution and Mechanical Response Of Magnesium Alloy AZ31, Mater. Sci. Eng. A, 2017, 684, p 37–46

    Article  Google Scholar 

  24. H. Asgari, A.G. Odeshi, J.A. Szpunar, L.J. Zeng, E. Olsson, and D.Y. Li, Effect of Yttrium on the Twinning and Plastic Deformation of AE Magnesium Alloy under Ballistic Impact, Mater. Sci. Eng. A, 2015, 623, p 10–21

    Article  Google Scholar 

  25. Y. Yang, Z. Wang, and L. Jiang, Evolution of Precipitates in ZK60 Magnesium Alloy During High Strain Rate Deformation, J. Alloys Compd., 2017, 705, p 566–571

    Article  Google Scholar 

  26. Y. Yang, L. Jiang, Z. Xu, and Z. Wang, An Examination of Adiabatic Shearing Behavior in ZK60 Alloy with Different States of Heat Treatment, Mater. Sci. Eng. A, 2017, 685, p 57–64

    Article  Google Scholar 

  27. T. Ye, L.X. Li, P.C. Guo, G. Xiao, and Z.M. Cheng, Effect of Aging Treatment on the Microstructure and Flow Behavior of 6063 Aluminium Alloy Compressed over a Wide Range of Strain Rate, Int. J. Impact Eng., 2016, 90, p 72–80

    Article  Google Scholar 

  28. B.J. Wang, P.C. Guo, S.K. Li, T. Ye, S.F. Cao, and L.X. Li, Influence of Strain Rate on Compression Deformation Behavior of AM80 Magnesium Alloy, Trans. Nonferrous Met. Soc. China, 2015, 25(3), p 560–567

    Article  Google Scholar 

  29. A. Galiyev, R. Kaibyshev, and G. Gottstein, Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60, Acta Mater., 2001, 49(7), p 1199–1207

    Article  Google Scholar 

  30. C. Xie, J. He, B. Zhu, X. Liu, J. Zhang, X. Wang, X. Shu, and Q. Fang, Transition of Dynamic Recrystallization Mechanisms of As-Cast AZ31Mg Alloys During Hot Compression, Int. J. Plasticity, 2018, 111, p 211–233

    Article  Google Scholar 

  31. J. Koike and R. Ohyama, Geometrical Criterion for the Activation of Prismatic Slip in AZ61Mg Alloy Sheets Deformed at Room Temperature, Acta Mater., 2005, 53(7), p 1963–1972

    Article  Google Scholar 

  32. P. Guo, L. Li, X. Liu et al., Compressive Deformation Behavior and Microstructure Evolution of AM80 Magnesium Alloy under Quasi-static and Dynamic Loading, Int. J. Impact Eng., 2017, 109, p 112–120

    Article  Google Scholar 

  33. P. Gao, S.Q. Zhu, X.H. An et al., Effect of Sample Orientation and Initial Microstructures on the Dynamic Recrystallization of a Magnesium Alloy, Mater. Sci. Eng. A, 2017, 691, p 150–154

    Article  Google Scholar 

  34. L. Qian, P. Guo, J. Meng, and F. Zhang, Unusual Grain-Size and Strain-Rate Effects on the Serrated Flow in FeMnC Twin-Induced Plasticity Steels, J. Mater. Sci., 2013, 48(4), p 1669–1674

    Article  Google Scholar 

  35. M.S. Tsai and C.P. Chang, Grain Size Effect on Deformation Twinning in Mg–Al–Zn Alloy, Mater. Sci. Technol., 2013, 29(6), p 759–763

    Article  Google Scholar 

  36. A. Ghaderi and M.R. Barnett, Sensitivity of Deformation Twinning to Grain Size in Titanium and Magnesium, Acta Mater., 2011, 59(20), p 7824–7839

    Article  Google Scholar 

  37. D. Zhou, L. Zhen, Y. Zhu, C. Xu, W. Shao, and B. Pang, Deformed Microstructure Evolution in AM60 Mg Alloy under Hypervelocity Impact at Velocity of 5 km s−1, Mater. Des., 2010, 31, p 3708–3715

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51601062 and 51605234) and the Natural Science Foundation of Hunan Province (No. 2019JJ50586).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luoxing Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, P., Li, L., Liu, X. et al. Room-Temperature Microstructural Evolution of Extruded AM80 Magnesium Alloys under Dynamic Loading. J. of Materi Eng and Perform 28, 3430–3437 (2019). https://doi.org/10.1007/s11665-019-04123-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04123-x

Keywords

Navigation