Skip to main content
Log in

Improved Corrosion Resistance of Ni-Co Coatings Prepared by Electrodeposition with Large Centrifugal Acceleration

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A higher Co content in Ni-Co coatings leads to better corrosion resistance to a certain degree. In this paper, centrifugal acceleration was introduced in the electrodeposition of Ni-Co coatings in order to obtain improved Ni-Co coatings with high Co content. With different centrifugal accelerations, the Co content, morphology, preferred coating orientation, microhardness, and wear and corrosion resistance were examined. Under large centrifugal acceleration, a maximal Co content of 38.25% was obtained according to the EDS results, which was higher than that obtained using normal electrodeposition. The SEM images indicated that the morphology of the prepared Ni-Co coatings with the highest Co content was smoothened. In addition, the microhardness of Ni-Co coatings with increased Co content was improved to about 530HV, which was hardly achieved under normal electrodeposition. Most of all, based on the polarization curve and EIS results, the corrosion resistance was significantly enhanced as the Co content reached the maximum. In general, corrosion resistance of the deposited Ni-Co coatings can be improved with large centrifugal acceleration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. X.W. Zhou and Y.F. Shen, Beneficial Effects of CeO2 Addition on Microstructure and Corrosion Behavior of Electrodeposited Ni Nanocrystalline Coatings, Surf. Coat. Technol., 2013, 235, p 433–446

    Article  Google Scholar 

  2. K.M. Sivaraman, O. Ergeneman, S. Pané, E. Pellicer, J. Sort, K. Shou, S. Suriñach, M.D. Baró, and B.J. Nelson, Electrodeposition of Cobalt-Yttrium Hydroxide/Oxide Nanocomposite Films from Particle-Free Aqueous Baths Containing Chloride Salts, Electrochim. Acta, 2011, 56, p 5142–5150

    Article  Google Scholar 

  3. W. Shao, D. Nabb, N. Renevier, I. Sherrington, Y. Fu, and J. Luo, Mechanical and Anti-corrosion Properties of TiO2 Nanoparticle Reinforced Ni Coating by Electrodeposition, J. Electrochem. Soc., 2012, 159, p D671–D676

    Article  Google Scholar 

  4. C.N. Tharamani, F.S. Hoor, N.S. Begum, and S.M. Mayanna, Microstructure, Surface and Electrochemical Studies of Electroless Cr-P Coatings Tailored for the Methanol Oxidative Fuel Cell, J. Solid State Electrochem., 2005, 9, p 476–482

    Article  Google Scholar 

  5. Z. Zeng, L. Wang, A. Liang, and J. Zhang, Tribological and Electrochemical Behavior of thick Cr-C Alloy Coatings Electrodeposited in Trivalent Chromium Bath as an Alternative to Conventional Cr Coatings, Electrochim. Acta, 2006, 52, p 1366–1373

    Article  Google Scholar 

  6. L. Benea, Electrochemical Impedance Spectroscopy and Corrosion Behavior of Co/CeO2 Nanocomposite Coatings in Simulating Body Fluid Solution, Metall. Mater. Trans. A, 2013, 44, p 1114–1122

    Article  Google Scholar 

  7. S. Bindiya, S. Basavanna, and Y.A. Naik, Electrodeposition and Corrosion Properties of Zn-V2O5 Composite Coatings, J. Mater. Eng. Perform., 2012, 21, p 1879–1884

    Article  Google Scholar 

  8. N.S. Qu, W.H. Qian, X.Y. Hu, and Z.W. Zhu, Fabrication of Ni-CeO2 Nanocomposite Coatings Synthesised via a Modified Sediment Co-Deposition Process, Int. J. Electrochem. Sci., 2013, 8, p 11564–11577

    Google Scholar 

  9. A. Bigos, E. Beltowska-Lehman, E. García-Lecina, M. Bieda, M.J. Szczerba, and J. Morgiel, Ultrasound-Assisted Electrodeposition of Ni and Ni-Mo Coatings from a Citrate-Ammonia Electrolyte Solution, J. Alloys Compd., 2017, 726, p 410–416

    Article  Google Scholar 

  10. J.R. Lopez, G. Stremsdoerfer, G. Trejo, R. Ortega, J.J. Perez, and Y. Meas, Corrosion Resistance of Nickel Coatings Obtained by Electrodeposition in a Sulfamate Bath in the Presence of Samarium (III), Int. J. Electrochem. Sci., 2012, 7, p 12244–12253

    Google Scholar 

  11. H. Zhao, L. Liu, J. Zhu, Y. Tang, and W. Hu, Microstructure and Corrosion Behavior of Electrodeposited Nickel Prepared from a Sulphamate Bath, Mater. Lett., 2007, 61, p 1605–1608

    Article  Google Scholar 

  12. Z.J. Tian, D.S. Wang, G.F. Wang, L.D. Shen, Z.D. Liu, and Y.H. Huang, Microstructure and Properties of Nanocrystalline Nickel Coatings Prepared by Pulse Jet Electrodeposition, Trans. Nonferr. Met. Soc., 2010, 20, p 1037–1042

    Article  Google Scholar 

  13. B. Bakhit and A. Akbari, A Comparative Study of the Effects of Saccharin and β-SiC Nano-Particles on the Properties of Ni and Ni-Co Alloy coatings, Surf. Coat. Technol., 2014, 253, p 76–82

    Article  Google Scholar 

  14. L. Wang, Y. Gao, Q. Xue, H. Liu, and T. Xu, Microstructure and Tribological Properties of Electrodeposited Ni-Co Alloy Deposits, Appl. Surf. Sci., 2005, 242, p 326–332

    Article  Google Scholar 

  15. M. Srivastava, V.E. Selvi, V.W. Grips, and K.S. Rajam, Corrosion Resistance and Microstructure of Electrodeposited Nickel-Cobalt Alloy Coatings, Surf. Coat. Technol., 2006, 201, p 3051–3060

    Article  Google Scholar 

  16. B. Bakhit and A. Akbari, Nanocrystalline Ni-Co Alloy Coatings: Electrodeposition Using Horizontal Electrodes and Corrosion Resistance, J. Coat. Technol. Res., 2013, 10, p 285–295

    Article  Google Scholar 

  17. G.Y. Qiao, T.F. Jing, N. Wang, Y.W. Gao, X. Zhao, J.F. Zhou, and W. Wang, High-Speed Jet Electrodeposition and Microstructure of Nanocrystalline Ni-Co Alloys, Electrochim. Acta, 2005, 51, p 85–92

    Article  Google Scholar 

  18. D. Golodnitsky, R. Yu, and A. Ulus, The Role of Anion Additives in the Electrodeposition of Nickel-Cobalt Alloys from Sulfamate Electrolyte, Electrochim. Acta., 2003, 47, p 2707–2714

    Article  Google Scholar 

  19. B. Löchel, A. Maciossek, H.J. Quenzer, B. Wagner, and G. Engelmann, Magnetically Driven Microstructures Fabricated with Multilayer Electroplating, Sens. Actuators A Phys., 1995, 46, p 98–103

    Article  Google Scholar 

  20. A.R. Shetty and A.C. Hegde, Ultrasound Induced Multilayer Ni-Co Alloy Coatings for Better Corrosion Protection, Surf. Coat. Technol., 2017, 322, p 99–107

    Article  Google Scholar 

  21. B. Bakhita, A. Akbaria, F. Nasirpouria, and M.G. Hosseini, Corrosion Resistance of Ni-Co Alloy and Ni-Co/SiC Nanocomposite Coatings Electrodeposited by Sediment Codeposition Technique, Appl. Surf. Sci., 2014, 307, p 351–359

    Article  Google Scholar 

  22. A.C. Lokhande and J.S. Bagi, Studies on Enhancement of Surface Mechanical Properties of Electrodeposited Ni-Co Alloy Coatings Due to Saccharin Additive, Surf. Coat. Technol., 2014, 258, p 225–231

    Article  Google Scholar 

  23. C. Liu, F. Su, and J. Liang, Nanocrystalline Co-Ni Alloy Coating Produced with Supercritical Carbon Dioxide Assisted Electrodeposition with Excellent Wear and Corrosion Resistance, Surf. Coat. Technol., 2016, 292, p 37–43

    Article  Google Scholar 

  24. Z.C. Guo, Y.P. Gong, and W.C. Lu, Electrochemical Studies of Nickel Deposition from Aqueous Solution in Supergravity Field, Sci. China Ser. E Technol. Sci., 2007, 50, p 39–50

    Article  Google Scholar 

  25. T. Liu, Z.C. Guo, Z. Wang, and M.Y. Wang, Effects of Gravity on the Electrodeposition and Characterization of Nickel Foils, Int. J. Min. Met. Mater., 2011, 18, p 59–65

    Article  Google Scholar 

  26. T. Liu, Z. Guo, Z. Wang, and M. Wang, Structure and Corrosion Resistance of Nickel Foils Deposited in a Vertical Gravity Field, Appl. Surf. Sci., 2010, 25, p 6634–6640

    Article  Google Scholar 

  27. M. Wang, Z. Wang, and Z. Guo, Electrodeposited Free-Crack NiW Films Under Super Gravity Filed: Structure and Excellent Corrosion Property, Mater. Chem. Phys., 2014, 148, p 245–252

    Article  Google Scholar 

  28. M.Y. Wang, Z. Wang, and Z.C. Guo, Understanding of the Intensified Effect of Super Gravity on Hydrogen Evolution Reaction, Int. J. Hydrogen Energy, 2009, 34, p 5311–5317

    Article  Google Scholar 

  29. G. Marshall, E. Mocskos, G. González, S. Dengra, F.V. Molina, and C. Iemmi, Stable, Quasi-Stable and Unstable Physicochemical Hydrodynamic Flows in Thin-Layer Cell Electrodeposition, Electrochim. Acta, 2006, 51, p 3058–3065

    Article  Google Scholar 

  30. H. Cheng and K. Scott, An Empirical Model Approach to Gas Evolution Reactions in a Centrifugal Field, J. Electroanal. Chem., 2003, 544, p 75–85

    Article  Google Scholar 

  31. M. Srivastava, V.K. William Grips, and K.S. Rajam, Electrodeposition of Ni-Co Composites Containing Nano-CeO2 and Their Structure, Properties, Appl. Surf. Sci., 2010, 257, p 717–722

    Article  Google Scholar 

  32. J.S. Chen, Research on Direct Preparation of Porous Foam Nickle by Jet Electrodeposition, Doctoral Dissertation, Nanjing University of Aeronautics and Astronautics, 2009

  33. J.A. Mac Geough, M.C. Leu, K.P. Rajurkar, A.K.M. De Silva, and Q. Liu, Electroforming Process and Application to Micro/Macro Manufacturing, Ann. CIRP, 2001, 50, p 499–514

    Article  Google Scholar 

  34. S.M. Silaimani and S. John, Review on Recent Advances in Electroforming During the Last Decade, Bull. Electrochem., 2001, 17, p 553–560

    Google Scholar 

  35. Y. Li, H. Jiang, L. Pang, B. Wang, and X. Liang, Novel Application of Nanocrystalline Nickel Electrodeposit: Making Good Diamond Tools Easily, Efficiently and Economically, Surf. Coat. Technol., 2007, 201, p 5925–5930

    Article  Google Scholar 

  36. C. Ma, S.C. Wang, R.J.K. Wood, J. Zekonyte, Q. Luo, and F.C. Walsh, Hardness of Porous Nanocrystalline Co-Ni Electrodeposits, Met. Mater. Int., 2013, 19, p 1187–1192

    Article  Google Scholar 

  37. M. Zamani, A. Amadeh, and S.M.L. Baghal, Effect of Co Content on Electrodeposition Mechanism and Mechanical Properties of Electrodeposited Ni-Co Alloy, Trans. Nonferr. Met. Soc., 2016, 26, p 484–491

    Article  Google Scholar 

  38. D.M. Dryden, T. Sun, R. Mccormick, R. Hickey, R. Vidu, and P. Stroeve, Anomalous Deposition of Co-Ni Alloys in Film and Nanowire Morphologies from Citrate Baths, Electrochim. Acta, 2016, 220, p 595–600

    Article  Google Scholar 

  39. M. Sato and R. Aogaki, Gravity Effect on Copper Corrosion, Mater. Sci. Forum, 1998, 289-292, p 459–464

    Article  Google Scholar 

  40. M. Sato, A. Yamada, and R. Aogaki, Electrochemical Reaction in a High Gravity Field Vertical to an Electrode Surface-Analysis of Diffusion Process with a Gravity Electrode, Jpn. J. Appl. Phys., 2003, 42, p 4230–4238

    Google Scholar 

  41. J.S. Chen, Y.H. Huang, and Z.D. Liu, Jet Electrodeposition Oriented by Rapid Prototyping, Trans. Nonferr. Met. Soc. China, 2005, 15, p 247–250

    Google Scholar 

  42. J.W. Dini, Electrodeposition: The Materials Science of Coatings and Substrates, Noyes, Park Ridge, 1993

    Google Scholar 

  43. J.Y. Li, C. Ni, J.Y. Liu, M.J. Jin, W. Li, and X.J. Jin, Extraordinary Stability of Nano-twinned Structure Formed During Phase Transformation Coupled with Grain Growth in Electrodeposited Co-Ni Alloys, Mater. Chem. Phys., 2014, 148, p 1202–1211

    Article  Google Scholar 

  44. L.W. Wang, Z.Y. Liu, Z.Y. Cui, C.W. Du, X.H. Wang, and X.G. Li, In Situ Corrosion Characterization of Simulated Weld Heat Affected Zone on API, X80 Pipeline Steel, Corros. Sci., 2014, 85, p 401–410

    Article  Google Scholar 

  45. Z.J. Zheng, Y. Gao, Y. Gui, and M. Zhu, Corrosion Behaviour of Nanocrystalline 304 Stainless Steel Prepared by Equal Channel Angular Pressing, Corros. Sci., 2012, 54, p 60–67

    Article  Google Scholar 

  46. S.H. Hassani, K. Raeissi, M. Azzi, D. Li, M.A. Golozar, and J.A. Szpunar, Improving the Corrosion and Tribocorrosion Resistance of Ni-Co Nanocrystalline Coatings in NaOH Solution, Corros. Sci., 2009, 51, p 2371–2379

    Article  Google Scholar 

  47. M. Srivastava, V.E. Selvi, V.K.W. Grips, and K.S. Rajam, Corrosion Resistance and Microstructure of Electrodeposited Nickel-Cobalt Alloy Coating, Surf. Coat. Technol., 2006, 201, p 3051–3060

    Article  Google Scholar 

Download references

Acknowledgments

The work described in this paper was supported by the Fundamental Research Funds Program and the Central Universities (NZ2016106) of the National Basic Research Program of China (973 Program, Grant 2015CB057502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyun Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Qu, N. Improved Corrosion Resistance of Ni-Co Coatings Prepared by Electrodeposition with Large Centrifugal Acceleration. J. of Materi Eng and Perform 28, 2104–2114 (2019). https://doi.org/10.1007/s11665-019-03946-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-03946-y

Keywords

Navigation