Skip to main content
Log in

Evaluation of TiO2 Nanoparticles Concentration and Applied Current Density Role in Determination of Microstructural, Mechanical, and Corrosion Properties of Ni–Co Alloy Coatings

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The goal of the present investigation is to evaluate the influences of plating parameters such as TiO2 nanoparticles concentration in the plating bath and applied current density on the microstructure-related and mechanical properties as well as corrosion behavior of Ni–Co coatings. The coatings were fabricated by different current densities and TiO2 nanoparticles concentration over the range 2–8 A dm–2 and 0–30 g/L, respectively. Results demonstrate that the incorporation of TiO2 nanoparticles into the plating bath coupled with the change in current density can deeply affect the microstructure-related, mechanical properties as well as corrosion resistance of Ni–Co coatings. According to the results, Ni–Co–20 g/L TiO2 coatings electroplated at current density of 4 A dm–2 shows the superior properties. The synergistic effects of higher Co amount coupled with the higher volume fraction of TiO2 throughout the microstructure of the coating is responsible for the above-mentioned improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Su, F., Liu, C., Guo, J., and Huang, P., Surf. Coat. Technol., 2013, vol. 25, p. 94.

    Article  CAS  Google Scholar 

  2. Bastwros, M.M., Esawi, A.M., and Wifi, A., Wear, 2013, vol. 307, p. 164.

    Article  CAS  Google Scholar 

  3. Hosseini, M.G., Abdolmaleki, M., and Sadjadi, S.S., Prot. Met. Phys. Chem. Surf., 2010, vol. 46, p. 117.

    Article  CAS  Google Scholar 

  4. Masoero, A., Morten, B., Olcese, G.L., Prudenziati, M., Tango, F., and Vinai, F., Thin Solid Films, 1999, vol. 350, p. 214.

    Article  CAS  Google Scholar 

  5. Traction, A.A., Coating Materials and Surface Coatings, Boca-Raton, FL: CRC Press, 2007.

    Google Scholar 

  6. Kanani, N., Electroplating: Basic Principles, Processes and Practice, Elsevier, 2004.

    Google Scholar 

  7. Tseluikin, V.N., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, p. 254.

    Article  CAS  Google Scholar 

  8. Kharmachi, I., Dhouibi, L., Berçot, P., Rezrazi, M., and Lakard, B., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, p. 1059.

    Article  CAS  Google Scholar 

  9. Ünal, H.I., Zor, S., Erten, U., and Gökergil, H.M., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, p. 600.

    Article  CAS  Google Scholar 

  10. Borkar, T. and Harimkar, S.P., Surf. Coat. Technol., 2011, vol. 205, p. 4124.

    Article  CAS  Google Scholar 

  11. Farzaneh, A., Asl, S.K., and Hosseini, M.G., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, p. 88.

    Article  CAS  Google Scholar 

  12. Khazrayie, M. and Aghdam, A., Prot. Met. Phys. Chem. Surf., 2011, vol. 47, p. 63.

    Article  CAS  Google Scholar 

  13. Gorelov, S.M., Tsupak, T.E., Vinokurov, E.G., Nevmyatullina, K.A., and Yarovaya, O.V., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, p. 622.

    Article  CAS  Google Scholar 

  14. Surender, M., Balasubramaniam, R., and Basu, B., Surf. Coat. Technol., 2004, vol. 187, p. 93.

    Article  CAS  Google Scholar 

  15. Bostani, B., Ahmadi, N.P., Yazdani, S., and Arghavanian, R., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, p. 222.

    Article  CAS  Google Scholar 

  16. Garcia, I., Fransaer, J., and Celis, J.P., Surf. Coat. Technol., 2001, vol. 148, p. 171.

    Article  CAS  Google Scholar 

  17. Ishikawa, M., Enomoto, H., Matsuoka, M., and Iwakura, C., Electrochim. Acta, 1994, vol. 39, p. 2153.

    Article  CAS  Google Scholar 

  18. Ma, C., Wang, S., and Walsh, F.C., Trans.Inst. Met. Finish., 2015, vol. 93, p. 275.

    Article  CAS  Google Scholar 

  19. Bakhit, B. and Akbari, A., J. Coat. Technol. Res., 2013, vol. 10, p. 285.

    Article  CAS  Google Scholar 

  20. Chang, L., Chen, C.H., and Fang, H., J. Electrochem. Soc., 2008, vol. 155, p. D57.

    Article  CAS  Google Scholar 

  21. Qu, N.S., Chan, K.C., and Zhu, D., Scr. Mater., 2004, vol. 50, p. 1131.

    Article  CAS  Google Scholar 

  22. Helle, K. and Walsh, F., Trans.Inst. Met. Finish., 1997, vol. 75, p. 53.

    Article  CAS  Google Scholar 

  23. Kerr, C., Barker, D., Walsh, F., and Archer, J., Trans.Inst. Met. Finish., 2000, vol. 78, p. 171.

    Article  CAS  Google Scholar 

  24. Walsh, F.C. and Ponce de Leon, C., Trans.Inst. Met. Finish., 2014, vol. 92, p 83.

    Article  CAS  Google Scholar 

  25. Low, C.T., Wills, R.G., and Walsh, F.C., Surf. Coat. Technol., 2006, vol. 201, p. 371.

    Article  CAS  Google Scholar 

  26. Bakhit, B., Akbari, A., Nasirpouri, F., and Hosseini, M.G., Appl. Surf. Sci., 2014, vol. 307, p. 351.

    Article  CAS  Google Scholar 

  27. Rostami, M., Fahami, A., Nasiri-Tabrizi, B., Ebrahimi-Kahrizsangi, R., and Saatchi, A., Appl. Surf. Sci., 2013, vol. 265, p. 369.

    Article  CAS  Google Scholar 

  28. Low, C.J. and Walsh, F.C., in Encyclopedia of Tribology, Springer, 2013.

    Google Scholar 

  29. Chang, L.M., Guo, H.F., and An, M.Z., Mater. Lett., 2008, vol. 62, p. 3313.

    Article  CAS  Google Scholar 

  30. Yang, Y. and Cheng, Y.F., Electrochim. Acta, 2013, vol. 109, p. 638.

    Article  CAS  Google Scholar 

  31. Amadeh, A. and Ebadpour, R., J. Nanosci. Nanotechnol., 2013, vol. 13, p. 1360.

    Article  CAS  Google Scholar 

  32. Karslioglu, R. and Akbulut, H., Appl. Surf. Sci., 2015, vol. 353, p. 615.

    Article  CAS  Google Scholar 

  33. Rasooli, A., Safavi, M.S., and Hokmabad, M.K., Ceram. Int., 2018, vol. 44, p. 6466.

    Article  CAS  Google Scholar 

  34. Ranjith, B. and Kalaignan, G.P., Appl. Surf. Sci., 2010, vol. 257, p. 42.

    Article  CAS  Google Scholar 

  35. Zhang, Z., Jiang, C., and Ma, N., J. Mater. Eng. Perform., 2014, vol. 23, p. 4065.

    Article  CAS  Google Scholar 

  36. Ahmad, Y.H. and Mohamed, A., Int. J. Electrochem. Sci., 2014, vol. 9, pp. 1942–1963.

    Google Scholar 

  37. Ma, C., Wang, S.C., and Walsh, F.C., Trans.Inst. Met. Finish., 2015, vol. 93, p. 104.

    Article  CAS  Google Scholar 

  38. Ma, C., Wang, S.C., and Walsh, F.C., Trans.Inst. Met. Finish., 2015, vol. 93, p. 8.

    Article  CAS  Google Scholar 

  39. Wang, Y., Tay, S.L., Wei, S., Xiong, C., Gao, W., Shakoor, R.A., and Kahraman, R., J. Alloys Compd., 2015, vol. 649, p. 222.

    Article  CAS  Google Scholar 

  40. Abed, F.A., Int. J. Adv. Res., 2015, vol. 3, p. 241.

    CAS  Google Scholar 

  41. Hassani, S., Raeissi, K., Azzi, M., Li, D., Golozar, M.A., and Szpunar, J.A., Corros. Sci., 2009, vol. 51, p. 2371.

    Article  CAS  Google Scholar 

  42. Łosiewicz, B., Mater. Chem. Phys., 2011, vol. 128, p. 442.

    Article  CAS  Google Scholar 

  43. Bakhit, B., Surf. Coat. Technol., 2015, vol. 275, p. 324.

    Article  CAS  Google Scholar 

  44. Chassaing, E., Portail, N., Levy, A.F., and Wang, G., J. Appl. Electrochem., 2004, vol. 34, p. 1085.

    Article  CAS  Google Scholar 

  45. Gomez, E., Pane, S., Alcobe, X., and Valles, E., Electrochim. Acta, 2006, vol. 51, p. 5703.

    Article  CAS  Google Scholar 

  46. Elkhoshkhany, N., Hafnway, A., and Khaled, A., J. Alloys. Compd., 2017, vol. 695, p. 1505.

    Article  CAS  Google Scholar 

  47. Pushpavanam, M., Manikandan, H., and Ramanathan, K., Surf. Coat. Technol., 2007, vol. 201, p. 6372.

    Article  CAS  Google Scholar 

  48. Chang, L.M., An, M.Z., and Shi, S.Y., Mater. Chem. Phys., 2005, vol. 94, p. 125.

    Article  CAS  Google Scholar 

  49. Madram, A.R., Pourfarzad, H., and Zare, H.R., Electrochim. Acta, 2012, vol. 85, p. 263.

    Article  CAS  Google Scholar 

  50. Shibli, S.M., Dilimon, V.S., Antony, S.P., and Manu, R., Surf. Coat. Technol., 2006, vol. 200, p. 4791.

    Article  CAS  Google Scholar 

  51. Shi, L., Sun, C., Gao, P., Zhou, F., and Liu, W., Appl. Surf. Sci., 2006, vol. 252, p. 3591.

    Article  CAS  Google Scholar 

  52. Srivastava, M., Selvi, V.E., Grips, V.W., and Rajam, K.S., Surf. Coat. Technol., 2006, vol. 201, p. 3051.

    Article  CAS  Google Scholar 

  53. Zadeh, K.M., Shakoor, R.A., and Radwan, A.B., Int. J. Electrochem. Sci., 2016, vol. 11, p. 7020

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Rasooli, Mir Saman Safavi, Somayeh Ahmadiyeh or Akram Jalali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasooli, A., Safavi, M.S., Ahmadiyeh, S. et al. Evaluation of TiO2 Nanoparticles Concentration and Applied Current Density Role in Determination of Microstructural, Mechanical, and Corrosion Properties of Ni–Co Alloy Coatings. Prot Met Phys Chem Surf 56, 320–327 (2020). https://doi.org/10.1134/S2070205120020215

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205120020215

Keywords:

Navigation