Skip to main content
Log in

Very High Cycle Fatigue of a Cast Aluminum Alloy: Size Effect and Crack Initiation

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Fatigue properties of an Al-Si-Cu cast alloy were investigated with life up to very high cycle fatigue regime. Particular attention was given to specimen size effect and fatigue crack initiation mechanism. Uniaxial fatigue tests with constant amplitudes were carried out by using ultrasonic fatigue testing machine operating at 20 kHz, compared to the results obtained by using conventional hydraulic fatigue machine at 35 Hz. In order to evaluate the size effect, two sets of specimens with different dimensions were used. The results show that the fatigue strength of the studied alloy decreases with the increase in specimen size. Scanning electron microscopy observation of fracture surfaces revealed that most fatigue cracks initiated from microstructural defects such as porosity located on specimen surface or in subsurface. Weibull statistical analysis of fatigue data accounting for size effect was performed to predict the fatigue life of the Al-Si-Cu alloy in the very high cycle regime. Good agreement was found between the fatigue life prediction and the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. C. Bathias, Piezoelectric Fatigue Testing Machines and Devices, Int. J. Fatigue, 2006, 28, p 1438–1445

    Article  Google Scholar 

  2. H. Mayer, Ultrasonic Torsion and Tension–Compression Fatigue Testing: Measuring Principles and Investigations on 2024-T351 Aluminum Alloy, Int. J. Fatigue, 2006, 28, p 1446–1455

    Article  CAS  Google Scholar 

  3. C. Bathias and P.C. Pari, Gigacycle Fatigue in Mechanical Practice, Marcel Dekker, New York, 2005

    Google Scholar 

  4. H. Mayer, M. Papakyriacou, B. Zettl, and S.E. Stanzl-Tschegg, Influence of Porosity on the Fatigue Limit of Die Cast Magnesium and Aluminum Alloys, Int. J. Fatigue, 2003, 25, p 245–256

    Article  CAS  Google Scholar 

  5. M.J. Caton, J.W. Jones, H. Mayer, S.E. Stanzl-Tschegg, and J.E. Allison, Demonstration of an Endurance Limit in Cast 319 Aluminum, Metall. Mater. Trans. A, 2003, 34, p 33–40

    Article  Google Scholar 

  6. M.J. Caton, J.W. Jones, and J.E. Allison, The Influence of Heat Treatment and Solidification Time on the Behavior of Small Fatigue Cracks in a Cast Aluminum Alloy, Mater. Sci. Eng. A, 1998, 314, p 81–85

    Article  Google Scholar 

  7. H.R. Ammar, A.M. Samuel, and F.H. Samuel, Porosity and the Fatigue Behavior of Hypoeutectic and Hypereutectic Aluminum-Silicon Casting Alloys, Int. J. Fatigue, 2008, 30, p 1024–1035

    Article  CAS  Google Scholar 

  8. P. Mu, Y. Nadot, C. Nadot-Martin, A. Chabod, I. Serrano-Munoz, and C. Verdu, Influence of Casting Defects on the Fatigue Behavior of Cast Aluminum AS7G06-T6, Int. J. Fatigue, 2014, 63, p 97–109

    Article  CAS  Google Scholar 

  9. I. Koutiri, D. Bellett, F. Morel, and E. Pessard, A Probabilistic Model for the High Cycle Fatigue Behaviour of Cast Aluminium Alloys Subject to Complex Loads, Int. J. Fatigue, 2013, 47, p 137–147

    Article  CAS  Google Scholar 

  10. R. Gonzalez, D.I. Martinez, J.A. Gonzalez, J. Talamantes, S. Valtierra, and R. Colas, Experimental Investigation for Fatigue Strength of a Cast Aluminium Alloy, Int. J. Fatigue, 2011, 33, p 273–278

    Article  CAS  Google Scholar 

  11. D.A. Lados and D. Apelian, Relationships Between Microstructure and Fatigue Crack Propagation Paths in Al-Si-Mg Cast Alloys, Eng. Fract. Mech., 2008, 75, p 821–832

    Article  Google Scholar 

  12. L. Zeng, J. Sakamoto, A. Fujii, and H. Noguchi, Role of Eutectic Silicon Particles in Fatigue Crack Initiation and Propagation and Fatigue Strength Characteristics of Cast Aluminum Alloy A356, Eng. Fract. Mech., 2014, 115, p 1–12

    Article  Google Scholar 

  13. P. Li, P.D. Lee, D.M. Maijer, and T.C. Lindley, Quantification of the Interaction Within Defect Populations on Fatigue Behavior in an Aluminum Alloy, Acta Mater., 2009, 57, p 3539–3548

    Article  CAS  Google Scholar 

  14. V.D. Le, F. Morel, D. Bellett, N. Saintier, and P. Osmond, Simulation of the Kitagawa-Takahashi Diagram Using a Probabilistic Approach for Cast Al-Si Alloys Under Different Multiaxial Loads, Int. J. Fatigue, 2016, 93, p 109–121

    Article  CAS  Google Scholar 

  15. I. Serrano-Munoz, J.Y. Buffiere, C. Verdu, Y. Gaillard, P. Mu, and Y. Nadot, Influence of Surface and Internal Casting Defects on the Fatigue Behavior of A357-T6 Cast Aluminium Alloy, Int. J. Fatigue, 2016, 82, p 361–370

    Article  CAS  Google Scholar 

  16. C. Bruggera, T. Palin-Luc, P. Osmondb, and M. Blanc, Gigacycle Fatigue Behavior of a Cast Aluminum Alloy Under Biaxial Bending: Experiments with a New Piezoelectric Fatigue Testing Device, Proc. Struct. Integr., 2016, 2, p 1173–1180

    Article  Google Scholar 

  17. X. Zhu, A. Shyam, J.W. Jones, H. Mayer, J.V. Lasecki, and J.F. Allison, Effects of Microstructure and Temperature on Fatigue Behavior of E319-T7 Cast Aluminum Alloy in Very Long Life Cycles, Int. J. Fatigue, 2006, 28, p 1566–1571

    Article  CAS  Google Scholar 

  18. A. Ezanno, C. Doudard, S. Calloch, and J.P. Heuzé, A New Approach to Characterizing and Modeling the High Cycle Fatigue Properties of Cast Materials Based on Self-Heating Measurements Under Cyclic Loadings, Int. J. Fatigue, 2013, 47, p 232–243

    Article  CAS  Google Scholar 

  19. S. Mohd, Y. Mutoh, Y. Otsuka, Y. Miyashita, T. Koike, and T. Suzuki, Scatter Analysis of Fatigue Life and Pore Size Data of Die-Cast AM60B Magnesium Alloy, Eng. Fail. Anal., 2012, 22, p 64–72

    Article  CAS  Google Scholar 

  20. S. Dezecot and M. Brochu, Microstructural Characterization and High Cycle Fatigue Behavior of Investment Cast A357 Aluminum Alloy, Int. J. Fatigue, 2015, 77, p 154–159

    Article  CAS  Google Scholar 

  21. Y. Furuya, Specimen Size effects on Gigacycle Fatigue Properties of High-Strength Steel Under Ultrasonic Fatigue Testing, Scr. Mater., 2008, 58, p 1014–1017

    Article  CAS  Google Scholar 

  22. Y. Murakami, Stress concentration, Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions, Y. Murakami, Ed., Elsevier, Oxford, 2002, p 11–24

    Chapter  Google Scholar 

  23. H. Xue, Explanation on Gigacycle Fatigue of Materials in Tension, Bending and Torsion Loading, PhD thesis, CNAM, Paris, 2005

  24. H. Xue, H. Tao, and C. Bathias, The Analysis of Specimen Design for Fatigue Test at Ultrasonic Frequency, VHCF3, 2004, p 456-463

  25. H. Xue, T. Wu, and C. Bathias, Gigacycle Fatigue Behavior of Cast Aluminum in Tension and Torsion Loading, Trans. Nanjing Univ. Aeronaut. Astronaut., 2011, 28, p 32–37

    Google Scholar 

  26. V.D. Le, F. Morel, D. Bellett, N. Saintier, and P. Osmond, Multiaxial High Cycle Fatigue Damage Mechanisms Associated with the Different Microstructural Heterogeneities of Cast Aluminium Alloys, Mater. Sci. Eng. A, 2016, 649, p 426–440

    Article  CAS  Google Scholar 

  27. T.O. Mbuya, I. Sinclair, A.J. Moffat, and P.A.S. Reed, Analysis of Fatigue Crack Initiation and S-N Response of Model Cast Aluminium Piston Alloys, Mater. Sci. Eng. A, 2011, 528, p 7331–7340

    Article  CAS  Google Scholar 

  28. R. Gonzalez, A. Gonzalez, J. Talamantes-Silva, S. Valtierra, R.D. Mercado-Solis, N.F. Garza-Montes-de-Oca, and R. Colas, Fatigue of an Aluminium Cast Alloy Used in the Manufacture of Automotive Engine Blocks, Int. J. Fatigue, 2013, 54, p 118–126

    Article  CAS  Google Scholar 

  29. M. Shirani and G. Harkegard, Fatigue Life Distribution and Size Effect in Ductile Cast Iron for Wind Turbine Components, Eng. Fail. Anal., 2011, 18, p 12–24

    Article  CAS  Google Scholar 

  30. A. Cetin, A. Naess, and G. Harkegard, A Physically Based Extreme Value Characterization of Material Fatigue, Int. J. Fatigue, 2013, 47, p 216–221

    Article  Google Scholar 

  31. A. Wormsen, B. Sjodin, G. Harkegard, and A. Fjeldstad, Non-local Stress Approach for Fatigue Assessment Based on Weakest-Link Theory and Statistics of Extremes, Fatig. Fract. Eng. Mater. Struct., 2007, 30, p 1214–1227

    Article  Google Scholar 

  32. H.P. Gaenser, Some Notes on Gradient, Volumetric and Weakest Link Concepts in Fatigue, Comput. Mater. Sci., 2008, 44, p 230–239

    Article  CAS  Google Scholar 

  33. H. Belmonte, M. Mulheron, and P. Smith, Weibull Analysis, Extrapolations and Implications for Condition Assessment of Cast Iron Water Mains, Fatig. Fract. Eng. Mater. Struct., 2007, 30, p 964–990

    Article  Google Scholar 

  34. C.M. Sonsino, Course of SN-Curves Especially in the High-Cycle Fatigue Regime with Regard to Component Design and Safety, Int. J. Fatigue, 2007, 29, p 2246–2258

    Article  Google Scholar 

  35. S. Romano, A. Brückner-Foit, A. Brandão, J. Gumpinger, T. Ghidini, and S. Beretta, Fatigue Properties of AlSi10Mg Obtained by Additive Manufacturing: Defect-based Modelling and Prediction of Fatigue Strength, Eng. Fract. Mech., 2018, 187, p 165–189

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports provided by Natural Science Basic Research Plan in Shaanxi Province of China (No. 2015JM1007) and the 111 Project, Grant No. B13044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongqian Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, H., Sun, Z., Zhang, X. et al. Very High Cycle Fatigue of a Cast Aluminum Alloy: Size Effect and Crack Initiation. J. of Materi Eng and Perform 27, 5406–5416 (2018). https://doi.org/10.1007/s11665-018-3617-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3617-y

Keywords

Navigation