Skip to main content
Log in

A New Method for Optimizing Hot Processing Parameters of Mg-6.0Zn-0.5Mn-0.5Er Alloy Based on Kinetic Model of Dynamic Recrystallization and Processing Map

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Hot deformation behavior of the cast-homogenized Mg-6.0Zn-0.5Mn-0.5Er alloy was studied using dynamic recrystallization (DRX) kinetic model and processing map. The compressing tests were conducted in the temperature range of 250-450 °C and strain rates of 0.001-1 s−1. According to the evolution of microstructures, under lower strain rates, the main DRX mechanism of Mg-6.0Zn-0.5Mn-0.5Er alloy is continuous DRX (CDRX); twinning induced DRX (TDRX) and CDRX both become the main DRX mechanism under higher strain rates. The DRX kinetics model of Mg-6.0Zn-0.5Mn-0.5Er alloy is calculated as \(X_{\text{DRX}} = 1 - \exp \left[ { - 1.9463\left( {\frac{{\varepsilon - \varepsilon_{\text{c}} }}{{\varepsilon^{*} }}} \right)^{1.4608} } \right]\), which is corresponding to the microstructure evolutions of DRX under different deformation conditions. The contour map of DRX was proposed based on the calculation results of DRX kinetics model. The processing maps are constructed to predict processing parameters of the alloy, and the predictability was evaluated combining with the contour map of DRX and dynamic materials model (DMM) processing map. It is deduced from the microstructures evolution and processing map that the optimum processing domain is mainly at 380-450 °C and 0.01-0.001 s−1, and 410-420 °C and 0.01-1 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Abbasi, A. Abdollahzadeh, B. Bagheri, and H. Omidvar, The Effect of SIC Particle Addition During FSW on Microstructure and Mechanical Properties of AZ31 Magnesium Alloy, J. Mater. Eng. Perform., 2015, 24, p 5037–5045

    Article  Google Scholar 

  2. Z.L. Liu, Y. Liu, X.Q. Liu, and M.M. Wang, Effect of Minor Zn Additions on the Mechanical and Corrosion Properties of Solution-Treated AM60-2%Re Magnesium Alloy, J. Mater. Eng. Perform., 2016, 25, p 2855–2865

    Article  Google Scholar 

  3. M. Shalbafi, R. Roumina, and R. Mahmudi, Hot Deformation of the Extruded Mg-10Li-1Zn Alloy: Constitutive Analysis and Processing Maps, J. Alloys Compd., 2017, 696, p 1269–1277

    Article  Google Scholar 

  4. B. Inem, Dynamic Recrystallization in a Thermomechanically Processed Metal Matrix Composite, Mater. Sci. Eng. A, 1995, 197, p 91–95

    Article  Google Scholar 

  5. T.Y. Kwak, H.K. Lim, and W.J. Kim, Hot Compression Characteristics and Processing Maps of a Cast Mg-9.5Zn-2.0Y Alloy with Icosahedral Quasicrystalline Phase, J. Alloys Compd., 2015, 644, p 645–653

    Article  Google Scholar 

  6. N. Tahreen, D.F. Zhang, F.S. Pan, X.Q. Jiang, D.Y. Li, and D.L. Chen, Hot Deformation and Processing Map of an As-Extruded Mg-Zn-Mn-Y Alloy Containing I, and W Phases, Mater. Design., 2015, 87, p 245–255

    Article  Google Scholar 

  7. H. Zhou, Q.D. Wang, B. Ye, and W. Guo, Hot Deformation and Processing Maps of As-Extruded Mg-9.8Gd-2.7Y-0.4Zr Mg Alloy, Mater. Sci. Eng. A, 2013, 576, p 101–107

    Article  Google Scholar 

  8. X.H. Chen, X.L. Wang, and Z.H. Zhang, Research Status of Dynamic Recrystallization of Magnesium Alloys, Ordnance Mater. Sci. Eng., 2013, 36, p 148–152

    Google Scholar 

  9. C.M. Liu, Z.J. Liu, X.R. Zhu, and H.T. Zhou, Research and Development Progress of Dynamic Recrystallization in Pure Magnesium and Its Alloys, Trans. Nonferrous Metal. Soc., 2006, 16, p 1–12

    Article  Google Scholar 

  10. B.J. Lv, J. Peng, D.W. Shi, A.T. Tang, and F.S. Pan, Constitutive Modeling of Dynamic Recrystallization Kinetics and Processing Maps of Mg-2.0Zn-0.3Zr Alloy Based on True Stress–Strain Curves, Mater. Sci. Eng. A, 2013, 560, p 727–733

    Article  Google Scholar 

  11. B.J. Lv, J. Peng, Y.J. Wang, X.Q. An, L.P. Zhong, A.T. Tang, and F.S. Pan, Dynamic Recrystallization Behavior and Hot Workability of Mg-2.0Zn-0.3Zr-0.9Y Alloy by Using Hot Compression Test, Mater. Des, 2014, 53, p 357–365

    Article  Google Scholar 

  12. B.J. Lv, J. Peng, Y. Peng, A.T. Tang, and F.S. Pan, The Effect of LPSO Phase on Hot Deformation Behavior and Dynamic Recrystallization Evolution of Mg-2.0 Zn-0.3 Zr-5.8 Y Alloy, Mater. Sci. Eng. A, 2013, 579, p 209–216

    Article  Google Scholar 

  13. B.J. Lv, J. Peng, L.L. Zhu, Y.J. Wang, and A.T. Tang, The Effect of 14H LPSO Phase on Dynamic Recrystallization Behavior and Hot Workability of Mg-2.0Zn-0.3Zr-5.8Y Alloy, Mater. Sci. Eng. A, 2014, 599, p 150–159

    Article  Google Scholar 

  14. B.J. Lv, J. Peng, and Z. Chu, The Effect of Icosahedral Phase on Dynamic Recrystallization Evolution and Hot Workability of Mg-2.0Zn-0.3Zr-0.2Y Alloy, J. Mater. Eng. Perform., 2015, 24, p 3502–3512

    Article  Google Scholar 

  15. B. Chen and J. Zhang, Microstructure and Mechanical Properties of ZK60-Er Magnesium Alloys, Mater. Sci. Eng. A, 2015, 633, p 154–160

    Article  Google Scholar 

  16. Q. Wang, K. Liu, Z. Wang, S. Li, and W. Du, Microstructure, Texture and Mechanical Properties of As-Extruded Mg-Zn-Er Alloys Containing W-Phase, J. Alloys Compd., 2014, 602, p 32–39

    Article  Google Scholar 

  17. J. Zhang, B. Chen, and C. Liu, An Investigation of Dynamic Recrystallization Behavior of ZK60-Er Magnesium Alloy, Mater. Sci. Eng. A, 2014, 612, p 253–266

    Article  Google Scholar 

  18. C.C. Sun, K. Liu, Z.H. Wang, S.B. Li, X. Du, and W.B. Du, Hot Deformation Behaviors and Processing Maps of Mg-Zn-Er Alloys Based on Gleeble-1500 Hot Compression Simulation, Trans. Nonferrous Metal. Soc., 2016, 26, p 3123–3134

    Article  Google Scholar 

  19. T. Sakai and J.J. Jonas, Overview No. 35 Dynamic Recrystallization: Mechanical and Microstructural Considerations, Acta Mater., 1984, 32, p 189–209

    Article  Google Scholar 

  20. X. Kai, Z. Li, G. Fan, Q. Guo, Z. Tan, W. Zhang, Y. Su, W. Lu, W.J. Moon, and D. Zhang, Strong and Ductile Particulate Reinforced Ultrafine-Grained Metallic Composites Fabricated by Flake Powder Metallurgy, Scr. Mater., 2013, 68, p 555–558

    Article  Google Scholar 

  21. A. Laasraoui and J.J. Jonas, Prediction of Steel Flow Stresses at High Temperatures and Strain Rates, Metall. Trans. A, 1991, 22, p 1545–1558

    Article  Google Scholar 

  22. C. Roucoules, S. Yue, and J.J. Jonas, Effect of Alloying Elements on Metadynamic Recrystallization in HSLA Steels, Metall. Trans. A, 1995, 26, p 181–190

    Article  Google Scholar 

  23. C.M. Sellars, Modelling Microstructural Development During Hot Rolling, Mater. Sci. Technol. Lond., 2013, 6, p 1072–1081

    Article  Google Scholar 

  24. Y. Cai, L. Wan, Z.H. Guo, C.Y. Sun, D.J. Yang, Q.D. Zhang, and Y.L. Li, Hot Deformation Characteristics of AZ80 Magnesium Alloy: Work Hardening Effect and Processing Parameter Sensitivities, Mater. Sci. Eng. A, 2017, 687, p 113–122

    Article  Google Scholar 

  25. Y. Xu, L. Hu, and Y. Sun, Deformation Behaviour and Dynamic Recrystallization of AZ61 Magnesium Alloy, J. Alloys Compd., 2013, 580, p 262–269

    Article  Google Scholar 

  26. S.I. Kim and Y.C. Yoo, Dynamic Recrystallization Behavior of AISI, 304 Stainless Steel, Mater. Sci. Eng. A, 2001, 311, p 108–113

    Article  Google Scholar 

  27. E.I. Poliak and J.J. Jonas, A One-Parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Mater., 1996, 44, p 127–136

    Article  Google Scholar 

  28. H. Li, H. Wang, Z. Li, C. Liu, and H. Liu, Flow Behavior and Processing Map of As-Cast Mg-10Gd-4.8Y-2Zn-0.6Zr Alloy, Mater. Sci. Eng. A, 2010, 528, p 154–160

    Article  Google Scholar 

  29. H.C. Xiao, S.N. Jiang, B. Tang, W.H. Hao, Y.H. Gao, Z.Y. Chen, and C.M. Liu, Flow Behavior and Processing Map of As-Cast Mg-10Gd-4.8Y-2Zn-0.6Zr Alloy, Mater. Sci. Eng. A, 2015, 628, p 311–318

    Article  Google Scholar 

  30. O. Sivakesavam and Y.V.R.K. Prasad, Characteristics of Superplasticity Domain in the Processing Map for Hot Working of As-Cast Mg-11.5Li-1.5Al Alloy, Mater. Sci. Eng. A, 2002, 323, p 270–277

    Article  Google Scholar 

  31. Z. Zhou, Q. Fan, Z. Xia, A. Hao, W. Yang, W. Ji, and H. Cao, Constitutive Relationship and Hot Processing Maps of Mg-Gd-Y-Nb-Zr Alloy, J. Mater. Sci. Technol., 2017, 33, p 637–644

    Article  Google Scholar 

  32. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Mater. Trans. A, 1984, 15, p 1883–1892

    Article  Google Scholar 

  33. H. Ziegler, Progress in Solid Mechanics, Vol 4, I.N. Sneddon and R. Hill, Ed., Wiley, New York, 1963, p 93–191

    Google Scholar 

Download references

Acknowledgments

This research was financially supported by Natural Science Foundation of Shandong Province, China (Project No. ZR2016EMQ08), Chinese Postdoctoral Science Foundation (Project No. 2017M612224) and Shandong Province Higher Education Science and Technology Program, China (Project Nos. J16LB06, J17KA055).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin-Jiang Lv or Feng Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, BJ., Guo, F., Che, QL. et al. A New Method for Optimizing Hot Processing Parameters of Mg-6.0Zn-0.5Mn-0.5Er Alloy Based on Kinetic Model of Dynamic Recrystallization and Processing Map. J. of Materi Eng and Perform 27, 3773–3782 (2018). https://doi.org/10.1007/s11665-018-3443-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3443-2

Keywords

Navigation