Skip to main content
Log in

The Effect of Icosahedral Phase on Dynamic Recrystallization Evolution and Hot Workability of Mg-2.0Zn-0.3Zr-0.2Y Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of Icosahedral phase (I-phase) on hot deformation behavior, dynamic recrystallization (DRX) evolution, and hot workability of Mg-2.0Zn-0.3Zr-0.2Y alloy has been investigated in the temperature range of 300-500 °C and strain rate range of 0.001-1 s−1 using Gleeble 3500D thermo-mechanical simulator. Based on regression analysis for Arrhenius-type equation of flow behavior, the average activation energy of deformation was determined as Q = 277.8 kJ/mol. The model of DRX evolution is \( \mathop X\nolimits_{\text{DRX}} = 1 - \exp [ - 1.8082(\frac{{\upvarepsilon - \upvarepsilon_{c} }}{{\upvarepsilon^{*} }})^{1.7904} ] \). The DRX model agreed well with the microstructure evolution of the alloy at all deformation conditions. At lower strain rates (0.001-0.01 s−1), continuous DRX (CDRX) is the main DRX mechanism that occurred near the original grain boundaries. Twin-dynamic recrystallization (TDRX) began to occur at lower deformation temperatures and higher strain rates (0.1-1 s−1). At a deformation temperature range of 250 to 350 °C and a strain rate of 1 s−1, the main DRX mechanism is TDRX, and the density of twins decreased, and CDRX began to occur near the original grain boundaries. When the deformation temperature increased to 400 °C, TDRX disappeared and CDRX occurred near original grain boundaries and I-phase particles. According to the flow stress behavior and DRX model, the processing maps have exhibited the optimum deformation conditions to be 450 °C and the strain rate range of 0.01-0.001 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Reference

  1. H. Huang, G. Yuan, C. Chen, W. Ding, and Z. Wang, Excellent Mechanical Properties of an Ultrafine-Grained Quasicrystalline Strengthened Magnesium Alloy with Multi-modal Microstructure, Mater. Lett., 2013, 107, p 181–184

    Article  Google Scholar 

  2. C. Li, D. Li, V. Solomon, M. Bauer, T. McCauley, and S. Berrier, Effect of Mechanical Processing on the Stability of Metastable Icosahedral Quasicrystalline Nanoparticles in Zirconium and Hafnium Based Metallic Glasses, J. Non-cryst. Solids, 2013, 381, p 68–72

    Article  Google Scholar 

  3. T. Moskalewicz, M. Kot, and B. Wendler, Microstructure Development and Properties of the AlCuFe Quasicrystalline Coating on near-α Titanium Alloy, Appl. Surf. Sci., 2011, 258, p 848–859

    Article  Google Scholar 

  4. W. Ohashi and F. Spaepen, Stable Ga-Mg-Zn Quasi-Periodic Crystals with Pentagonal Dodecahedral Solidification Morphology, Nature, 1987, 330, p 555–556

    Article  Google Scholar 

  5. P. Ramachandrarao and G. Sastry, A Basis for the Synthesis of Quasicrystals, Pramana, 1985, 25, p L225–L230

    Article  Google Scholar 

  6. G. Sastry and P. Ramachandrarao, A Study of the Icosahedral Phase: Mg32 (Al, Zn) 49, J. Mater. Res., 1986, 1, p 247–250

    Article  Google Scholar 

  7. K. Stan, L. Lityńska-Dobrzyńska, J.L. Lábár, and A. Góral, Effect of Mo on Stability of Quasicrystalline Phase in Al-Mn-Fe Alloy, J. Alloy. Compd., 2014, 586, p S395–S399

    Article  Google Scholar 

  8. A. Tsai, A. Inoue, and T. Masumoto, Chemical Effects on Periodicity and Structure of Decagonal Phases in Al-Ni-and Al-Co-Based Alloys, Philos. Mag. Lett., 1995, 71, p 161–167

    Article  Google Scholar 

  9. F. Pierce, S. Poon, and Q. Guo, Electron Localization in Metallic Quasicrystals, Science, 1993, 261, p 737–739

    Article  Google Scholar 

  10. A. Langsdorf and W. Assmus, Growth of Large Single Grains of the Icosahedral Quasicrystal ZnMgY, J. Cryst. Growth, 1998, 192, p 152–156

    Article  Google Scholar 

  11. A. Langsdorf, F. Ritter, and W. Assmus, Determination of the Primary Solidification Area of the Icosahedral Phase in the Ternary Phase Diagram of Zn-Mg-Y, Philos. Mag. Lett., 1997, 75, p 381–388

    Article  Google Scholar 

  12. S.Q. Luo, A.T. Tang, F.S. Pan, K. Song, and W.Q. Wang, Effect of Mole Ratio of Y to Zn on Phase Constituent of Mg-Zn-Zr-Y Alloys, T. Nonferr. Metal. Soc., 2011, 21, p 795–800

    Article  Google Scholar 

  13. D. Bae, Y. Kim, and I. Kim, Thermally Stable Quasicrystalline Phase in a Superplastic Mg-Zn-Y-Zr Alloy, Mater. Lett., 2006, 60, p 2190–2193

    Article  Google Scholar 

  14. I. Kim, D. Bae, and D. Kim, Precipitates in a Mg-Zn-Y Alloy Reinforced by an Icosahedral Quasicrystalline Phase, Mater. Sci. Eng. A, 2003, 359, p 313–318

    Article  Google Scholar 

  15. Z. Luo, S. Zhang, Y. Tang, and D. Zhao, On the Stable Quasicrystals in Slowly Cooled Mg-Zn-Y Alloys, Scr. Metall. Mater., 1995, 32, p 1411–1416

    Article  Google Scholar 

  16. A. Müller, G. Garcés, P. Pérez, and P. Adeva, Grain Refinement of Mg-Zn-Y Alloy Reinforced by an Icosahedral Quasicrystalline Phase by Severe Hot Rolling, J. Alloy. Compd., 2007, 443, p L1–L5

    Article  Google Scholar 

  17. A. Singh, M. Nakamura, M. Watanabe, A. Kato, and A. Tsai, Quasicrystal Strengthened Mg-Zn-Y Alloys by Extrusion, Scr. Mater., 2003, 49, p 417–422

    Article  Google Scholar 

  18. S. Xu, M. Zheng, S. Kamado, K. Wu, G. Wang, and X. Lv, Dynamic Microstructural Changes During Hot Extrusion and Mechanical Properties of a Mg-5.0Zn-0.9Y-0.16Zr (wt.%) Alloy, Mater. Sci. Eng. A, 2011, 528, p 4055–4067

    Article  Google Scholar 

  19. D. Zhao, Y. Tang, Z. Luo, N. Shen, R. Wang, and S. Zhang, The Face-Centered Icosahedral Quasicrystalline Phase in Mg-Zn-Y-Zr Alloys, Mater. Lett., 1995, 23, p 277–281

    Article  Google Scholar 

  20. B. Inem, Dynamic Recrystallization in a Thermomechanically Processed Metal Matrix Composite, Mater. Sci. Eng. A, 1995, 197, p 91–95

    Article  Google Scholar 

  21. T. Xu, X. Peng, J. Qin, Y. Chen, Y. Yang, and G. Wei, Dynamic Recrystallization Behavior of Mg-Li-Al-Nd Duplex Alloy During Hot Compression, J. Alloy Compd., 2015, 639, p 79–88

    Article  Google Scholar 

  22. X. Wang, X. Hu, K. Nie, K. Deng, K. Wu, and M. Zheng, Dynamic Recrystallization Behavior of Particle Reinforced Mg Matrix Composites Fabricated by Stir Casting, Mater. Sci. Eng. A, 2012, 545, p 38–43

    Article  Google Scholar 

  23. B.J. Lv, J. Peng, Y. Peng, A.T. Tang, and F.S. Pan, The Effect of LPSO Phase on Hot Deformation Behavior and Dynamic Recrystallization Evolution of Mg-2.0Zn-0.3Zr-5.8Y Alloy, Mater. Sci. Eng. A, 2013, 579, p 209–216

    Article  Google Scholar 

  24. B.J. Lv, J. Peng, Y.J. Wang, X.Q. An, L.P. Zhong, A.T. Tang, and F.S. Pan, Dynamic Recrystallization Behavior and Hot Workability of Mg-2.0Zn-0.3Zr-0.9Y Alloy by Using Hot Compression Test, Mater. Design, 2014, 53, p 357–365

    Article  Google Scholar 

  25. B.J. Lv, J. Peng, L.L. Zhu, Y.J. Wang, and A.T. Tang, The Effect of 14H LPSO Phase on Dynamic Recrystallization Behavior and Hot Workability of Mg-2.0Zn-0.3Zr-5.8Y Alloy, Mater. Sci. Eng. A, 2014, 599, p 150–159

    Article  Google Scholar 

  26. M. Hakamada, A. Watazu, N. Saito, and H. Iwasaki, Dynamic Recrystallization During Hot Compression of As-Cast and Homogenized Noncombustible Mg-9Al-1Zn-1Ca (in Mass%) Alloys, Mater. Sci. Eng. A., 2010, 527, p 7143–7146

    Article  Google Scholar 

  27. D. Bae, S. Kim, D. Kim, and W. Kim, Deformation Behavior of Mg-Zn-Y Alloys Reinforced by Icosahedral Quasicrystalline Particles, Acta Mater., 2002, 50, p 2343–2356

    Article  Google Scholar 

  28. L.X. Li, J. Zhou, and J. Duszczyk, Determination of a Constitutive Relationship for AZ31B Magnesium Alloy and Validation through Comparison between Simulated and Real Extrusion, J. Mater. Process. Technol., 2006, 172, p 372–380

    Article  Google Scholar 

  29. C. Sellars and W. McTegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14, p 1136–1138

    Article  Google Scholar 

  30. J. Taleghani, E. Ruiz Navas, M. Salehi, and J. Torralba, Hot Deformation Behaviour and Flow Stress Prediction of 7075 Aluminium Alloy Powder Compacts During Compression at Elevated Temperatures, Mater. Sci. Eng. A, 2012, 534, p 624–631

    Article  Google Scholar 

  31. B.J. Lv, J. Peng, D.W. Shi, A.T. Tang, and F.S. Pan, Constitutive Modeling of Dynamic Recrystallization Kinetics and Processing Maps of Mg-2.0Zn-0.3Zr Alloy Based on True Stress-Strain Curves, Mater. Sci. Eng. A, 2013, 560, p 727–733

    Article  Google Scholar 

  32. S.I. Kim and Y.C. Yoo, Dynamic Recrystallization Behavior of AISI, 304 Stainless Steel, Mater. Sci. Eng. A, 2001, 311, p 108–113

    Article  Google Scholar 

  33. E. Poliak and J. Jonas, A One-Parmenter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Mater., 1996, 44, p 127–136

    Article  Google Scholar 

  34. H. Li, H. Wang, Z. Li, C. Liu, and H. Liu, Flow Behavior and Processing Map of As-Cast Mg-10Gd-4.8Y-2Zn-0.6Zr Alloy, Mater. Sci. Eng. A, 2010, 528, p 154–160

    Article  Google Scholar 

  35. J.A. Yasi, L.G. Hector, Jr., and D.R. Trinkle, First-Principles Data for Solid-Solution Strengthening of Magnesium: From Geometry and Chemistry to Properties, Acta Mater., 2010, 58, p 5704–5713

    Article  Google Scholar 

  36. S. Xu, S. Kamado, N. Matsumoto, T. Honma, and Y. Kojima, Recrystallization Mechanism of As-Cast AZ91 Magnesium Alloy During Hot Compressive Deformation, Mater. Sci. Eng. A, 2009, 527, p 52–60

    Article  Google Scholar 

  37. F. Slooff, J. Dzwonczyk, J. Zhou, J. Duszczyk, and L. Katgerman, Hot Workability Analysis of Extruded AZ Magnesium Alloys with Processing Maps, Mater. Sci. Eng. A, 2010, 527, p 735–744

    Article  Google Scholar 

  38. K. Rao, Y. Prasad, K. Suresh, N. Hort, and K. Kainer, Hot Deformation Behavior of Mg-2Sn-2Ca Alloy in as-Cast Condition and after Homogenization, Mater. Sci. Eng. A, 2012, 552, p 444–450

    Article  Google Scholar 

  39. Y. Prasad, H. Gegel, S. Doraivelu, J. Malas, J. Morgan, K. Lark, and D. Barker, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Trans. A, 1984, 15, p 1883–1892

    Article  Google Scholar 

  40. Y. Prasad and K. Rao, Processing Maps and Rate Controlling Mechanisms of Hot Deformation of Electrolytic Tough Pitch Copper in the Temperature Range 300-950 °C, Mater. Sci. Eng. A, 2005, 391, p 141–150

    Article  Google Scholar 

Download references

Acknowledgment

This work was funded by the National Science & Technology Support Program (Project No.2011BAE22B03-3) and International Science & Technology Cooperation Program of China (Project No.2011DFA5090-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin-Jiang Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, BJ., Peng, J. & Chu, Z. The Effect of Icosahedral Phase on Dynamic Recrystallization Evolution and Hot Workability of Mg-2.0Zn-0.3Zr-0.2Y Alloy. J. of Materi Eng and Perform 24, 3502–3512 (2015). https://doi.org/10.1007/s11665-015-1604-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1604-0

Keywords

Navigation