Skip to main content

Advertisement

Log in

Microstructure, Mechanical Properties and Fracture of Austenitic Steel EK-164 After Warm Deformation at 600–900°C

  • CONDENSED-STATE PHYSICS
  • Published:
Russian Physics Journal Aims and scope

The effect of the modes of thermomechanical treatment (TMT), involving warm plastic deformation (e = 2) by rolling in the temperature interval of 600 – 900°C, on the austenitic steel microstructure is studied. Using the methods of transmission electron microscopy, it is shown that this plastic deformation results in the formation of a highly defective fragmented microstructure with a high density of low-angle misorientation boundaries. Numerous grains/subgrains flattened in the rolling plane and elongated in the rolling direction are revealed. It is shown that as the TMT temperature is increased, the fraction of low-angle boundaries decreases and so does the dislocation density. It is noted that the average transverse subgrain size varies from 112 nm (TMT-1) to 306 nm (TMT-4). These peculiarities of the steel microstructure ensure advanced strength properties as a result of all TMT modes. The optimal mechanical properties are achieved in this steel after TMT-1, in which case the resulting microstructure is highly homogeneous with a high dislocation density retained; the yield strength values are 808 MPa at 20°C and 516 MPa at 650°C, with the elongation to failure of about 7%. The principal fracture mechanism of the steel samples is that of ductile dimple transgranular fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kozlov, K. Kozlov and I. Portnykh, J. Nucl. Mater. 549, 152915 (2021). Doi: https://doi.org/10.1016/j.jnucmat.2021.152915.

    Article  Google Scholar 

  2. N. M. Mitrofanova and T. A. Churyumova, Voprosy Atomnoy Nauki i Tekhniki. Seriya: Materialovedeniye i Novyye Materialy 2(98), 100 (2019).

  3. N. M. Mitrofanova, M. G. Bogolepov, F. G. Reshetnikov, Yu. K. Bibishvili, T. A. Topilina, N. K. Zhitkov, V. N. Voyevodin, Yu. I. Kazennov, and V. M. Zakharkin, Austenitic Steel, RF Patent No. 2068022 [in Russian]. Appl. 17.06.1994; Publ. 20.10.1996.

  4. N. M. Mitrofanova, M. V. Leontieva-Smirnova, Yu. A. Ivanov, T. A. Churyumova, B. A. Vasiliev, M. R. Farakshin, O. M. Saraev, N. N. Oshkanov, V. V. Chuev, S. A. Bychkov, and M. I. Ilyashik, Fast Neutron Reactor Fuel Cell, a Utility Model to RF Patent No. 127235 [in Russian]. Appl. 20.11.2012; Publ. 20.04.2013. Bull. No. 11.

  5. Z. Yanushkevich, A. Lugovskaya, A. Belyakov and R. Kaibyshev, Mater. Sci. Eng. A 667, 279 (2016). Doi: https://doi.org/10.1016/j.msea.2016.05.008.

    Article  Google Scholar 

  6. F. K. Yan, G. Z. Liu, N. R. Tao and K. Lu, Acta Mater. 60, 1059 (2012). Doi: https://doi.org/10.1016/j.actamat.2011.11.009.

    Article  ADS  Google Scholar 

  7. Y. Xiong, Y. Yue, T. He, et al., Materials 11, 1557 (2018). Doi: https://doi.org/10.3390/ma11091557.

    Article  ADS  Google Scholar 

  8. J. Zhao and Z. Jiang, Progr. Mater. Sci. 94, 174 (2018). Doi: https://doi.org/10.1016/j.pmatsci.2018.01.006.

    Article  Google Scholar 

  9. A. Järvenpää, M. Jaskari, A. Kisko and P. Karjalainen, Metals 10, 281 (2020). Doi: https://doi.org/10.3390/met10020281.

    Article  Google Scholar 

  10. G. S. Sun, L. X. Du, J. Hu and R. D. K. Misra, Mater. Sci. Eng. A 709, 254 (2018). Doi: https://doi.org/10.1016/j.msea.2017.10.054.

    Article  Google Scholar 

  11. S. A. Akkuzin and I. Yu. Litovchenko, Vektor Nauki Tol'yattinskogo Gosudarstvennogo Universiteta 2(52), 7 (2020). Doi: https://doi.org/10.18323/2073-5073-2020-2-7-14.

    Article  Google Scholar 

  12. S. J. Wang, T. Jozaghi, I. Karaman, et al., Mater. Sci. Eng. A 694, 121 (2017). Doi: https://doi.org/10.1016/j.msea.2017.03.073.

    Article  Google Scholar 

  13. S. Akkuzin, I. Litovchenko, N. Polekhina, et al., Metals. 12, 63 (2022). Doi: https://doi.org/10.3390/met12010063.

    Article  Google Scholar 

  14. S. A. Akkuzin, I. Yu. Litovchenko, A. N. Tyumentsev and V. M. Chernov, Russ. Phys. J. 62(4), 698 (2019). Doi: https://doi.org/10.1007/s11182-019-01766-0.

    Article  Google Scholar 

  15. S. A. Akkuzin, I. Yu. Litovchenko, A. V. Kim, et al., Letters on Materials 12, 399 (2022). Doi: https://doi.org/10.22226/2410-3535-2022-4-394-398.

    Article  Google Scholar 

  16. ASM Handbook. Volume 12 of the 9th Edition, Fractography. Metals Park, Ohio: American Society for Metals (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Akkuzin.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkuzin, S.A., Polekhina, N.A., Kim, A.V. et al. Microstructure, Mechanical Properties and Fracture of Austenitic Steel EK-164 After Warm Deformation at 600–900°C. Russ Phys J 66, 1235–1241 (2024). https://doi.org/10.1007/s11182-023-03067-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-03067-z

Keywords

Navigation