Skip to main content
Log in

Protection of Galvanized Steel with Silanes: Its Comparison with Chromium(VI)

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The corrosion behavior of hot dip galvanized steel (HDGS) pre-treated with mercaptopropyltrimethoxysilane and a commercial sulfur-bearing silane was studied. Electrochemical polarization, electrochemical impedance spectroscopy, and electrochemical noise tests showed that silane coatings have a corrosion protection performance similar to the usual hexavalent chromium HDGS passivation treatments. It is also evident that the silane films protect the zinc surface through the formation of an isolating barrier. Through voltamperometric studies it was possible to define an electrochemical porosity of the protective coatings. Based on copper sulfate tests and electrochemical porosity results the films protection capability was evaluated, showing that silane treatments have similar or even better protection performance than standard chromium passivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Toxicological Profile for Chromium, Agency for Toxic Substances, U.S. Public Health Service, Report No. ASTSDR/TP-88/10

  2. W.E.G. Hansal, S. Hansal, M. Pölzler, A. Kornherr, G. Zifferer, and G.E. Nauer, Investigation of Polysiloxane Coatings as Corrosion Inhibitors of Zinc Surfaces, Surf. Coat. Technol., 2006, 200, p 3056–3063

    Article  Google Scholar 

  3. B.C. Dave, X.K. Hu, Y. Devaraj, and S.K. Dhali, Sol-Gel-Derived Corrosion-Protection Coatings, J. Sol Gel Sci. Technol., 2004, 32(1-3), p 143–147

    Article  Google Scholar 

  4. S. Ono, H. Tsuge, Y. Nishi, and S. Hirano, Improvement of Corrosion Resistance of Metals by an Environmentally Friendly Silica Coating Method, J. Sol Gel Sci. Technol., 2004, 29(3), p 147–153

    Article  Google Scholar 

  5. X.F. Yang, D.E. Tallman, V.J. Gelling, G.P. Bierwagen, L.S. Kasten, and J. Berg, Use of a Sol-Gel Conversion Coating for Aluminum Corrosion Protection, Surf. Coat. Technol., 2001, 140, p 44–50

    Article  Google Scholar 

  6. J.H. Osborne, Observations on Chromate Conversion Coatings from a Sol-Gel Perspective, Prog. Organ. Coat., 2001, 41, p 280–286

    Article  Google Scholar 

  7. A. Conde, J. De Damborenea, A. Duran, and M. Menning, Protective Properties of a Sol-Gel Coating on Zinc Coated Steel, J. Sol Gel Sci. Technol., 2006, 37, p 79–85

    Article  Google Scholar 

  8. U. Bexell and T.M. Grehk, A Corrosion Study of Hot-Dip Galvanized Steel Sheet Pre-treated with γ-Mercaptopropyltrimethoxysilane, Surf. Coat. Technol., 2007, 201, p 4734–4742

    Article  Google Scholar 

  9. U. Bexell, T.M. Grehk, M. Olsson, and U. Gelius, XPS and AES Characterization of Hydrolysed γ-Mercaptopropyltrimethoxysilane Deposited on Al, Zn and Al-43.4Zn-1.6Si Alloy-Coated Steel, Surf. Interface Anal., 2004, 36(7), p 624–631

    Article  Google Scholar 

  10. U. Bexell and M. Olsson, Time-of-Flight SIMS Characterization of Hydrolyzed Organofunctional and Non-organofunctional Silanes Deposited on Al, Zn and Al-43.4Zn-1.6Si Alloy-Coated Steel, Surf. Interface Anal., 2003, 35(11), p 880–887

    Article  Google Scholar 

  11. Dynasylan SIVO160® technical sheet. http://www.dynasylan.com

  12. T. Titz, F. Hörzenberger, K. Van der Bergh, and G. Grundmeier, Correlation of Interfacial Electrode Potential and Corrosion Resistance of Plasma Polymer Coated Galvanized Steel. Part 2: Influence of Forming Induced Defects, Corros. Sci., 2010, 52, p 378–386

    Article  Google Scholar 

  13. M. Dattilo, Polarization and Corrosion of Electrogalvanized Steel—Evaluation of Zinc Coatings Obtained from Waste-Derived Zinc Electrolytes, J. Electrochem. Soc., 1985, 132, p 2557–2561

    Article  Google Scholar 

  14. P.R. Roberge, R. Beaudoin, and V.S. Sastri, Electrochemical Noise Measurements for Field Applications, Corros. Sci., 1989, 29(10), p 1231–1233

    Article  Google Scholar 

  15. J.R. Kearns, J.R. Scully, P.R., Roberge, D.L. Reichert, J.L. Dawson (Eds.), Electrochemical Noise Measurements for Corrosion Applications, ASTM, STP 1277, USA, 1996, p 39–58

  16. R.A. Cottis, Interpretation of Electrochemical Noise Data, Corrosion, 2001, 57(3), p 265–287

    Article  Google Scholar 

  17. F. Huet, Electrochemical Noise Technique, in Analytical Methods in Corrosion Science and Engineering, P. Marcus, F. Mansfeld, Ed., CRC Taylor & Francis, USA, 2005, p 507–570

  18. Y. Tan, S. Bailey, and B. Kinsella, The Monitoring of the Formation and Destruction of Corrosion Inhibitor Films Using Electrochemical Noise Analysis (ENA), Corros. Sci., 1996, 38(10), p 1681–1695

    Article  Google Scholar 

  19. S. Mabbutt, D.J. Mills, and C.P. Woodcock, Developments of the Electrochemical Noise Method (ENM) for More Practical Assessment of Anti-corrosion Coatings, Prog. Org. Coat., 2007, 59, p 192–196

    Article  Google Scholar 

  20. L. Jiang, M. Wolpers, P. Volovitch, and K. Ogle, An atomic Emission Spectroelectrochemical Study of Passive Film Formation and Dissolution on Galvanized Steel Treated with Silicate Conversion Coatings, Surf. Coat. Technol., 2012, 206(13), p 3151–3157

    Article  Google Scholar 

  21. D. Zhu and W.J. van Ooij, Enhanced Corrosion Resistance of AA 2024-T3 and Hot-dip Galvanized Steel Using A Mixture of Bis-[triethoxysilylpropyl]tetrasulfide and bis-[trimethoxysilylpropyl]amine, Electrochim. Acta, 2004, 49, p 1113–1125

    Article  Google Scholar 

  22. G. Barceló, M. Sarret, and C. Müller, Corrosion Resistance and Mechanical Properties of Zinc Electrocoatings, Electrochim. Acta, 1998, 43, p 13–20

    Article  Google Scholar 

  23. M.W. Kendig, H.S. Ryang, T.I. Liao, and S.I. Jeanjaquet, Comparison of Corrosion Protection Provided by a Non-Volatile Organic Compound Epoxy and a Marine Epoxy Primer, Corrosion, 1999, 55(24), p 222–228

    Article  Google Scholar 

  24. E. Almeida, L. Fedrizzi, and T.C. Diamantino, Oxidising Alternative Species to ChromiumVI, in Zinc-galvanised Steel Surface Treatment. Part 2-An Electrochemical Study, Surf. Coat. Technol., 1998, 105(1-2), p 97–101

    Article  Google Scholar 

  25. A.A.O. Magalhaes, I.C.P. Margarit, and O.R. Mattos, Electrochemical Characterization of Chromate Coatings on Galvanized Steel, Electrochim. Acta, 1999, 44(24), p 4281–4287

    Article  Google Scholar 

  26. M.-N. Chen, X.-B. Lu, Z.-H. Guo, and R. Huang, Influence of Hydrolysis Time on the Structure and Corrosion Protective Performance of (3-Mercaptopropyl)triethoxysilane Film on Copper, Corros. Sci., 2011, 53, p 2793–2802

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank the Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and the Universidad Nacional de La Plata (UNLP) by the financial support to carry out the present research paper. The authors also thank to Bernardo Browne and Andrés Campbell from Camsi-X for the silanes to do this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. A. Egli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seré, P.R., Deyá, C., Egli, W.A. et al. Protection of Galvanized Steel with Silanes: Its Comparison with Chromium(VI). J. of Materi Eng and Perform 23, 342–348 (2014). https://doi.org/10.1007/s11665-013-0746-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0746-1

Keywords

Navigation