Skip to main content
Log in

Dynamic Recrystallization Behavior of AISI 422 Stainless Steel During Hot Deformation Processes

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, hot compression tests were performed to investigate the dynamic recrystallization (DRX) process of a martensitic stainless steel (AISI 422) at temperatures of 950, 1000, 1050, 1100 and 1150 °C and strain rates of 0.01, 0.1 and 1 s−1. The dependency of strain-hardening rate on flow stress was used to estimate the critical stress for the onset of DRX. Accordingly, the critical stress to peak stress ratio was calculated as 0.84. Moreover, the effect of true strain was examined by fitting stress values to an Arrhenius type constitutive equation, and then considering material constants as a function of strain by using a third-order polynomial equation. Finally, two constitutive models were used to investigate the competency of the strain-dependent constitutive equations to predict the flow stress curves of the studied steel. It was concluded that one model offers better precision on the flow stress values after the peak stress, while the other model gives more accurate results before the peak stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. N.V. Dashunin, E.P. Manilova, and A.I. Rybnikov, Phase and Structural Transformations in 12% Chromium Steel ÉP428 Due to Long-Term Operation of Moving Blades, Met. Sci. Heat Treat., 2007, 49, p 23–29

    Article  Google Scholar 

  2. L.Y. Liberman and M.N. Sokolova, A Study of Forgings of Full-Scale Rotors from Stainless Steel 2Kh12VNMF (ÉI802, ÉP428), Trudy TsKTI, 1965, 53, p 75–89

    Google Scholar 

  3. L.Y. Liberman and M.I. Peisikhis, Properties of Steels and Alloys Used for Boiler and Turbine Production, Izd, TsKTI, Leningrad, 1966, 16, p 40–53

    Google Scholar 

  4. H. Mirzadeh, M.H. Parsa, and D. Ohadi, Hot Deformation Behavior of Austenitic Stainless Steel for a Wide Range of Initial Grain Size, Mater. Sci. Eng. A, 2013, 569, p 54–60

    Article  Google Scholar 

  5. L.L. Wang, R.B. Li, and Y.G. Liao, Study on Characterization of Hot Deformation of 403 Steel, Mater. Sci. Eng. A, 2013, 567, p 84–88

    Article  Google Scholar 

  6. A. Momeni and K. Dehghani, Prediction of Dynamic Recrystallization Kinetics and Grain Size for 410 Martensitic Stainless Steel During Hot Deformation, Met. Mater. Int., 2010, 5, p 843–849

    Article  Google Scholar 

  7. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-Dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater. Sci., 2014, 60, p 130–207

    Article  Google Scholar 

  8. T. Sakai and J.J. Jonas, Dynamic Recrystallization: Mechanical and Microstructural Considerations, Acta Metall., 1984, 32, p 189–209

    Article  Google Scholar 

  9. H. Mirzadeh, J.M. Cabrera, J.M. Prado, and A. Najafizadeh, Hot Deformation Behavior of a medium Carbon Microalloyed Steel, Mater. Sci. Eng. A, 2011, 528, p 3876–3882

    Article  Google Scholar 

  10. Z.Y. Zeng, L.Q. Chen, F.X. Zhu, and X.H. Liu, Static Recrystallization Behavior of a Martensitic Heat-Resistant Stainless Steel 403Nb, Acta Metall. Sin. (Engl. Lett.), 2011, 24(5), p 381–389

    Google Scholar 

  11. Z.Y. Zeng, L.Q. Chen, F.X. Zhu, and X.H. Liu, Dynamic Recrystallization Behavior of a Heat-Resistant Martensitic Stainless Steel 403Nb During Hot Deformation, J. Mater. Sci. Technol., 2011, 27(10), p 913–919

    Article  Google Scholar 

  12. L. Sahebdel, S.M. Abbasi, and A. Momeni, Microstructural Evolution Through Hot Working of the Single-Phase and Two-Phase Ti-6Al-4V Alloy, Int. J. Mater. Res., 2011, 102(1), p 301–307

    Article  Google Scholar 

  13. Y. Fang, X. Chen, B. Madigan, H. Cao, and S. Konovalov, Effects of Strain Rate on the Hot Deformation Behavior and Dynamic Recrystallization in China Low Activation Martensitic Steel, Fus. Eng. Des., 2016, 103, p 21–30

    Article  Google Scholar 

  14. G.R. Ebrahimi, A. Momeni, M. Jahazi, and P. Bocher, Dynamic Recrystallization and Precipitation in 13%Cr Super-martensitic Stainless Steels, Metall. Mater. Trans. A, 2014, 45(4), p 2219–2231

    Article  Google Scholar 

  15. E. Shafie and K. Dehghani, Prediction of Single-Peak Flow Stress Curves at High Temperature Using a New Logarithmic-Power Function, J. Mater. Eng. Perform., 2016, 25, p 4024–4035

    Article  Google Scholar 

  16. J. Huang and Z. Xu, Evolution Mechanism of Grain Refinement Based on Dynamic Recrystallization in Multiaxially Forged Austenite, Mater. Lett., 2006, 60(15), p 1854–1858

    Article  Google Scholar 

  17. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Current Issues in Recrystallization: A Review, Mater. Sci. Eng. A, 1997, 238, p 219–274

    Article  Google Scholar 

  18. A. Najafizadeh and J.J. Jonas, Predicting the Critical Stress for Initiation of Dynamic Recrystallization, ISIJ Int., 2006, 46, p 1679–1684

    Article  Google Scholar 

  19. Standard Practice for Quantitative Measurement and Reporting of Hypoeutectoid Carbon and Low-Alloy Steel Phase Transformations, A1033-04, ASTM International Standard, 2007, p 1–14

  20. Standard Guide for Preparation of Metallographic Specimens, E3-01, Annual Book of ASTM Standards, 2007, p 1–12

  21. ASTM Standard, E-96 (2004) e2, Standard test methods for determining average grain size, ASTM, 2004

  22. C.M. Sellars, Recrystallization of Metals During Hot Deformation, Philos. Trans. R. Soc. Lond. A, 1978, 1350, p 147–158

    Article  Google Scholar 

  23. T. Sakai, Dynamic Recrystallization Microstructures Under Hot Working Conditions, Mater. Process. Technol., 1995, 53, p 349–361

    Article  Google Scholar 

  24. H.J. McQueen and N.D. Ryan, Constitutive Analysis in Hot Working, Mater. Sci. Eng. A, 2002, 322, p 43–63

    Article  Google Scholar 

  25. F. Ren, F. Chen, and J. Chen, Investigation on Dynamic Recrystallization Behavior of Martensitic Stainless Steel, Adv. Mater. Sci. Eng., 2014, 2014, p 1–16

  26. C.M. Sellars and W.J.M.G. Tegart, Hot Workability, Int. Metall. Rev., 1972, 17(1), p 1–24

    Google Scholar 

  27. M.S. Ghazani, A. Vajd, and B. Mosadeg, Prediction of Critical Stress and Strain for the Onset of Dynamic Recrystallization in Plain Carbon Steels, J. Mater. Sci. Eng., 2015, 12(1), p 61–67

    Google Scholar 

  28. H.J. McQueen and N.D. Ryan, Constitutive Analysis in Hot Working, Mater. Sci. Eng. A, 2002, 322, p 43–52

    Article  Google Scholar 

  29. Z. Akbari, H. Mirzadeh, and J.M. Cabrera, A Simple Constitutive Model for Predicting Flow Stress of Medium Carbon Microalloyed Steel During Hot Deformation, Mater. Des., 2015, 77, p 126–131

    Article  Google Scholar 

  30. R. Ebrahimi, S.H. Zahiri, and A. Najafizadeh, Mathematical Modeling of the Stress–Strain Curves of Ti-IF Steel at High Temperature, J. Mater. Proc. Technol., 2006, 171, p 301–305

    Article  Google Scholar 

  31. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon, Oxford, UK, 1996, p 363–392

    Google Scholar 

  32. B. Hutchinson, J. Hagstro, O. Karlsson et al., Microstructures and Hardness of As-Quenched Martensites (0.1–0.5%C), Acta Mater., 2011, 59, p 5845–5858

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Naderi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadabadi, R.M., Naderi, M., Mohandesi, J.A. et al. Dynamic Recrystallization Behavior of AISI 422 Stainless Steel During Hot Deformation Processes. J. of Materi Eng and Perform 27, 560–571 (2018). https://doi.org/10.1007/s11665-018-3153-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3153-9

Keywords

Navigation