Skip to main content
Log in

Microstructural and Electrochemical Evaluation of Fusion Welded Low-Nickel and 304 SS at Different Heat Input

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present research study investigates the effect of heat input using E 308 electrode (controlled by welding current, i.e., 70, 85 and 100 A) on microstructure, mechanical properties and corrosion behavior of low-nickel and 304 stainless steel (SS) weldments produced by shielded metal arc welding technique. SEM investigation shows that with the higher heat input, δ-ferrite content was reduced. Dendrite and inter-dendritic length is also reduced by lowering the heat input. For all the heat inputs, it is observed that δ-ferrite content was higher in 304 stainless steel (SS) as compared to that of low-nickel austenitic stainless steel (Cr-Mn SS). Considering the heat input for Cr-Mn SS, coarse grains were observed in the heat-affected zone region. For low heat input (LHI), tensile fracture surface has exhibited river-like pattern with dimple appearance. Corrosion studies show better pitting resistance for low heat input (LHI) samples due to higher δ-ferrite present in the weld region. Similarly, higher interphase corrosion resistance is observed in both the SS grades causing more dissolution in the LHI samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. C. Novak, Handbook of Stainless Steels, McGraw-Hill, NewYork, 1977, p 1

    Google Scholar 

  2. P.H. Kuck, Nickel, U.S. Geological Survey, Mineral Commodity Summaries, pp. 110–111 (2009)

  3. P. Marshall, Austenitic Stainless Steel: Microstructure and Mechanical Property, Elsevier, England, 1984, p 14–15

    Google Scholar 

  4. 200 Series Stainless Steels an Overview, BSSA, pp. 1–3 (2006)

  5. 200 Series Stainless Steel: CrMn Grade, Australia: ASSDA Technical Bulletin, pp. 1–3 (2006)

  6. “New 200-Series” Steels: An Opportunity or a Threat to the Image Of Stainless Steel?, Belgium: International Stainless Steel Forum (ISSF), pp. 3–7 (2005)

  7. J. Charles, A. Kosmac, J. Krautschick, J.A. Simon, N. Suutala, and T. Taulavuori, Austenitic Chromium Manganese Stainless Steels: A European Approach, Euro Inox, Belgium, 2012, p 2–5

    Google Scholar 

  8. W. Bendick, J. Gabrel, B. Hahn, and B. Vandenberghe, New Low Alloy Heat Resistant Ferritic Steels T/P23 and T/P24 for Power Plant Application, Mater. Today Proc, 2015, 2, p 3342–3349

    Article  Google Scholar 

  9. J.J. Coronado, H.F. Caicedo, and A.L. Gómez, The Effects of Welding Processes on Abrasive Wear Resistance for Hardfacing Deposits, Tribo. Int., 2009, 42, p 745–749

    Article  Google Scholar 

  10. G. Magudeeswaran, V. Balasubramanian, and G.M. Reddy, Effect of Welding Processes and Consumables on Fatigue Crack Growth Behaviour of Armour Grade Quenched and Tempered Steel Joints, Defence Technol., 2014, 10, p 47–59

    Article  Google Scholar 

  11. R.E. Galvis and W. Hormaza, Characterization of Failure Modes for Different Welding Processes of AISI/SAE 304 Stainless Steels, Eng. Fail. Anal., 2011, 18, p 1791–1799

    Article  Google Scholar 

  12. P. Yayla, E. Kaluc, and K. Ural, Effects of Welding Processes on the Mechanical Properties of HY 80 Steel Weldments, Mater. Des., 2007, 28, p 1898–1906

    Article  Google Scholar 

  13. R.V. Taiwade, A.P. Patil, R.D. Ghugal, S.J. Patre, and R.K. Dayal, Effect of Welding Passes on Heat Affected Zone and Tensile Properties of AISI, 304 Stainless Steel and Chrome-Manganese Austenitic Stainless Steel, ISIJ Int., 2013, 53, p 102–109

    Article  Google Scholar 

  14. J. Yan, M. Gao, and X. Zeng, Study on Microstructure and Mechanical Properties of 304 Stainless Steel Joints by TIG, Laser and Laser-TIG Hybrid Welding, Opt. Lasers Eng., 2010, 48, p 512–517

    Article  Google Scholar 

  15. S. Kumar and A.S. Shahi, Effect of Heat Input on the Microstructure and Mechanical Properties of Gas Tungsten Arc Welded AISI, 304 Stainless Steel Joints, Mater. Des., 2011, 32, p 3617–3623

    Article  Google Scholar 

  16. G.R. Mirshekari, E. Tavakoli, M. Atapour, and B. Sadeghian, Microstructure and Corrosion Behavior of Multipass Gas Tungsten Arc Welded 304L Stainless Steel, Mater. Des., 2014, 55, p 905–911

    Article  Google Scholar 

  17. A.V. Bansod, A.P. Patil, A.P. Moon, and N.N. Khobragade, Intergranular Corrosion Behavior of Low-Nickel and 304 Austenitic Stainless Steels, JMEPEG, 2016, 25, p 3615–3626

    Article  Google Scholar 

  18. J. Verma, R.V. Taiwade, R.K. Khatirkar, S.G. Sapate, and A.D. Gaikwad, Microstructure, Mechanical and Intergranular Corrosion Behavior of Dissimilar DSS 2205 and ASS 316L Shielded Metal Arc Welds, Trans. Indian Inst. Met., 2017, 70, p 225–237

    Article  Google Scholar 

  19. M. Mukherjee and T.K. Pal, Influence of Heat Input on Martensite Formation and Impact Property of Ferritic-Austenitic Dissimilar Weld Metals, J. Mater. Sci. Technol., 2012, 28, p 343–352

    Article  Google Scholar 

  20. D.J. Kotecki and T.A. Siewert, WRC-1992 Constitution Diagram for Stainless Steel Weld Metals: A Modification of the WRC-1988 Diagram, Weld. J., 1992, 71, p 171–178

    Google Scholar 

  21. M. Rahmani, A. Eghlimi, and M. Shamanian, Evaluation of Microstructure and Mechanical Properties in Dissimilar Austenitic/Super Duplex Stainless Steel Joint, J. Mater. Eng. Perform., 2014, 23, p 3745–3753

    Article  Google Scholar 

  22. S. Lampman, Weld Integrity and Performance: A Source Book Adapted, ASM international, Materials Park, 1997, p 250

    Google Scholar 

  23. P. De Tiedra, O. Martin, M. Lopez, and M. San-Juan, Use of EPR Test to Study the Degree of Sensitization in Resistance Spot Welding Joints of AISI, 304 Austenitic Stainless Steel, Corros. Sci., 2011, 53, p 1563–1570

    Article  Google Scholar 

  24. C.J. Long and W.T. DeLong, The Ferrite Content of Austenitic Stainless Steel Weld Metal, Weld. Res. Counc. Bull., 1973, 52, p 281–297

    Google Scholar 

  25. S. Kou, Welding Metallurgy, 2nd ed., Wiley, Hoboken, 2003

    Google Scholar 

  26. J.C. Lippold and D.J. Kotecki, Welding Metallurgy and Weldability of Stainless Steels, Vol 1, Wiley, New jersey, 2005, p 104–109

    Google Scholar 

  27. V.V. Satyanarayana, G. Madhusudhan Reddy, and T. Mohandas, Dissimilar Metal Friction Welding of Austenitic–Ferritic Stainless Steels, J. Mater. Process. Technol., 2005, 160, p 128–137

    Article  Google Scholar 

  28. M. Coetzee and P.G.H. Pistorius, The Welding of Experimental Low-Nickel Cr-Mn-N Stainless Steels Containing Copper, J. S. Afr. Inst. Min. Metall., 1996, 96, p 99–108

    Google Scholar 

  29. W. Chuaiphana and L. Srijaroenpramong, The Behavior of Nitrogen on the Welding Parameters of the Dissimilar Weld Joints Between AISI, 304 and AISI, 316L Austenitic Stainless Steels Produced by Gas Tungsten Arc Welding, Appl. Mech. Mater., 2013, 248, p 395–401

    Article  Google Scholar 

  30. J. Hou, Q.J. Peng, Y. Takeda, J. Kuniya, T. Shoji, J.Q. Wang, E.-H. Han, and W. Ke, Microstructure and Mechanical Property of the Fusion Boundary Region in an Alloy 182-Low Alloy Steel Dissimilar Weld Joint, J. Mater. Sci., 2010, 45, p 5332–5338

    Article  Google Scholar 

  31. W. Chuaiphana and L. Srijaroenpramong, Effect of Welding Speed on Microstructures, Mechanical Properties and Corrosion Behavior of GTA-Welded AISI, 201 Stainless Steel Sheets, J. Mater. Process. Technol., 2014, 214, p 402–408

    Article  Google Scholar 

  32. K.D. Ramkumar, G. Thiruvengatam, S.P. Sudharsa, D. Mishra, N. Arivazhagan, and R. Sridhar, Characterization of Weld Strength and Impact Toughness in the Multi-pass Welding Of Super-Duplex Stainless Steel UNS 32750, Mater. Des., 2014, 60, p 125–135

    Article  Google Scholar 

  33. B. Sabbaghzadeh, R. Parvizi, A. Davoodi, and M.H. Moayed, Corrosion Evaluation of Multi-pass Welded Nickel-Aluminum Bronze Alloy in 3.5% Sodium Chloride Solution: A Restorative Application of Gas Tungsten Arc Welding Process, Mater. Des., 2014, 58, p 346–356

    Article  Google Scholar 

  34. C.O.A. Olsson and D. Landolt, Passive Films on Stainless Steels-Chemistry, Structure and Growth, Electrochim. Acta, 2003, 48, p 1093–1104

    Article  Google Scholar 

  35. D.H. Kang and H.W. Lee, Study of the Correlation Between Pitting Corrosion and the Component Ratio of the Dual Phase in Duplex Stainless Steel Welds, Corros. Sci., 2013, 74, p 396–407

    Article  Google Scholar 

  36. K. Chandra, V. Kain, and R. Tewari, Microstructural and Electrochemical Characterisation of Heat-Treated 347 Stainless Steel with Different Phases, Corros. Sci., 2013, 67, p 118–129

    Article  Google Scholar 

  37. C.C. Silva and H.C. Miranda, H.B. de Sant’Ana, J.P. Farias, Austenitic and Ferritic Stainless Steel Dissimilar Weld Metal Evaluation for the Applications as- Coating in the Petroleum Processing Equipment, Mater. Des., 2013, 47, p 1–8

    Article  Google Scholar 

  38. D.A. Moreno, J.R. Ibars, J.L. Polo, and J.M. Bastidas, EIS Monitoring Study of the Early Microbiologically Influenced Corrosion of AISI, 304L Stainless Steel Condenser Tubes in Freshwater, J. Solid State Electrochem., 2014, 18, p 377–388

    Article  Google Scholar 

  39. L. Hamadou, A. Kadri, N. Benbrahim, and J.P. Petit, Characterization of Thin Anodically Grown Oxide Films on AISI, 304L Stainless Steel, J. Electrochem. Soc., 2007, 154, p 291–297

    Article  Google Scholar 

  40. J. Moon, H.Y. Ha, and T.H. Lee, Corrosion Behavior in High Heat Input Welded Heat Affected Zone of Ni-Free High-Nitrogen Fe-18Cr-10Mn-N Austenitic Stainless Steel, Mater. Charact., 2013, 82, p 113–119

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Director Dr. N. S. Chaudhary, VNIT Nagpur, for providing the necessary facilities for carrying out this investigation and for his constant encouragement to publish this work. The authors are grateful to Jageswar Verma (Research Scholar, Corrosion Engineering Laboratory, Department of Metallurgical and Material Engineering) for his help in conducting the electrochemical tests, Mr. Shreedhar Gadge (Senior Technician, Chemical Analysis Laboratory Department of Metallurgical and Materials Engineering) for performing the solution annealing treatment and Mr. Ventak Raman (Ador Fontech Ltd.) for proving welding facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur V. Bansod.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansod, A.V., Patil, A.P., Moon, A.P. et al. Microstructural and Electrochemical Evaluation of Fusion Welded Low-Nickel and 304 SS at Different Heat Input. J. of Materi Eng and Perform 26, 5847–5863 (2017). https://doi.org/10.1007/s11665-017-3054-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-3054-3

Keywords

Navigation