Skip to main content
Log in

EIS monitoring study of the early microbiologically influenced corrosion of AISI 304L stainless steel condenser tubes in freshwater

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This study examined the early stages of tarnishing of American Iron Steel Institute (AISI) 304L austenitic stainless steel (SS) condenser tubes in contact with running freshwater from the Tagus River in Spain. The immersion time of the tubes was 569 days. Tarnishing originated by biofouling was assessed using electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) analyses in conjunction with argon ion sputtering. The EIS diagrams showed a semicircle that was better defined as the experimental time increased, indicating the decreasing tarnishing resistance of the immersed specimens. The EIS results were validated using Kramers–Kronig relationships. SEM micrographs of biofouling indicated that the number of microorganisms on the SS surfaces increased with immersion time. According to the XPS spectra, the main elements deposited on the tarnished AISI 304L SS layer were calcium, phosphorus, and nitrogen. A mechanism of biofouling and microbiologically influenced corrosion behavior of AISI 304L SS condenser tubes in freshwater is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Pope DH, Soracco RJ, Wilde EW (1982) Studies on biologically induced corrosion in heat exchanger systems at the Savannah River Plant, Aiken, SC. Mater Performance 21:43–50

    CAS  Google Scholar 

  2. Stoecker JG (1983) Waterside corrosion of model heat exchanger tubes. In: Corrosion/83, NACE, Houston, Texas, paper no. 245

  3. Pope DH, Duquette DJ, Johannes AH, Wayner PC (1984) Microbiologically influenced corrosion of industrial alloys. Mater Performance 23:14–18

    CAS  Google Scholar 

  4. Rao TS, Nair KVK (1998) Microbiologically influenced stress corrosion cracking failure of admiralty brass condenser tubes in a nuclear power plant cooled by freshwater. Corros Sci 40:1821–1836

    Article  CAS  Google Scholar 

  5. Abrahan GJ, Kain V, Dey GK (2009) MIC failure of cupronickel condenser tube in fresh water application. Eng Fail Anal 16:934–943

    Article  Google Scholar 

  6. Ibars JR, Polo JL, Moreno DA, Ranninger C, Bastidas JM (2004) An impedance study on admiralty brass dezincification originated by microbiologically influenced corrosion. Biotechnol Bioeng 87:855–862

    Article  CAS  Google Scholar 

  7. Moreno DA, Cano E, Ibars JR, Polo JL, Montero F, Bastidas JM (2004) Initial stages of microbiologically influenced tarnishing on titanium after 20 months of immersion in freshwater. Appl Microbiol Biotechnol 64:593–598

    Google Scholar 

  8. Kobrin G (1986) Reflections on microbiologically induced corrosion of stainless steels. In: Dexter SC (ed) Biologically induced corrosion. NACE, Houston, pp 33–46

    Google Scholar 

  9. Ibars JR, Moreno DA, Ranninger C (1992) Microbial corrosion of stainless steels. Microbiol SEM 8:63–75

    CAS  Google Scholar 

  10. Pope DH (1986) A study of microbiologically influenced corrosion in nuclear power plants and a practical guide for countermeasures. EPRI NP-4582. Electric Power Research Institute, Palo Alto

    Google Scholar 

  11. Licina GJ (1988) Sourcebook for microbiologically influenced corrosion in nuclear power plants. EPRI NP-5580. Electric Power Research Institute, Palo Alto

    Google Scholar 

  12. Sinha UP, Wolfram JH, Rogers D (1991) Microbially influenced corrosion of stainless steels in nuclear power plants. In: Dowling NJ, Mittleman MW, Danko JC (eds) Microbially influenced corrosion and biodeterioration, vol 4. The University of Tennessee, Knoxville, pp 51–60

    Google Scholar 

  13. Sarró MI, Alemán O, Moreno DA, Roso M, Ranninger C (2004) Influenced of the chemical composition, heat and surface treatment in the biofouling of austenitic stainless steels. Rev Metal 40:21–29

    Article  Google Scholar 

  14. Moreno DA, Ibars JR, Ranninger C (2000) Influence of microstructure on the microbial corrosion behaviour of stainless steels. Rev Metal 36:266–278

    Article  CAS  Google Scholar 

  15. Characklis WG, Cooksey KE (1983) Biofilms and microbial fouling. Adv Appl Microbiol 29:93–138

    Article  CAS  Google Scholar 

  16. Characklis WG, Marshall KC (1990) Biofilms: a basis for an interdisciplinary approach. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley, New York, pp 3–15

    Google Scholar 

  17. Nekoska G (1989) Cathodic protection to control microbiologically influenced corrosion. In: Licina GJ (ed) Microbial corrosion: 1988 workshop proceedings. EPRI NP-6345. Electric Power Research Institute, Palo Alto, pp C-1–C-13

    Google Scholar 

  18. Nekoska G (1991) Cathodic protection criteria for controlling microbially influenced corrosion power plants. EPRI NP-7312. Electric Power Research Institute, Palo Alto

    Google Scholar 

  19. Neuburg HH (2000) Continuous tube cleaning system. In: Müller-Steinhagen H (ed) Heat exchanger fouling: mitigation and cleaning technologies. Publico, Essen, pp 128–146

    Google Scholar 

  20. EPRI (2009) Nuclear maintenance applications center: heat exchanger maintenance guide. EPRI 1018089. Electric Power Research Institute, Palo Alto

    Google Scholar 

  21. Krzywosz KJ (2006) Nondestructive evaluation: enhanced ID pit sizing for heat exchangers. EPRI 1013454. Electric Power Research Institute, Palo Alto

    Google Scholar 

  22. Mansfeld F, Little B (1991) A technical review of electrochemical techniques applied to microbiologically influenced corrosion. Corros Sci 32:247–272

    Article  CAS  Google Scholar 

  23. Buchanan RA, Li P, Zhang X, Dowling NDE, Stansbury EE, Danks JC, White DC (1991) Electrochemical studies of microbiologically influenced corrosion. EPRI NP-7468. Electric Power Research Institute, Palo Alto

    Google Scholar 

  24. Dowling NJE, Stansbury EE, White DC, Borenstein SW, Danko JC (1989). On-line electrochemical monitoring of microbially influence corrosion. In: Microbial corrosion: 1988 workshop proceedings. EPRI NP-6345. Electric Power Research Institute, Palo Alto, pp 5-1/5-19

  25. AWWA–APHA–WEF (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC

    Google Scholar 

  26. Rao TS (2009) Microbiologically influenced corrosion: basics and case studies. Corros Rev Special Issue:333–365

  27. Balamurugan P, Hiren Joshi M, Rao TS (2011) Microbial fouling community analysis of the cooling water system of a nuclear test reactor with emphasis on sulphate reducing bacteria. Biofouling 27:967–968

    Article  CAS  Google Scholar 

  28. Angell P, Urbanic K (2000) Sulphate-reducing bacterial activity as a parameter to predict localized corrosion of stainless alloys. Corros Sci 42:897–912

    Article  CAS  Google Scholar 

  29. Postgate JR (1984) The sulphate-reducing bacteria, second edition. Cambridge University Press, UK

    Google Scholar 

  30. Talyor BF, Oremland RS (1979) Depletion of adenosine triphosphate in Desulfovibrio by oxyanions of group VI elements. Curr Opin Microbiol 3:101–103

    Article  Google Scholar 

  31. Polo JL, Cano E, Bastidas JM (2002) An impedance study on the influence of molybdenum in stainless steels pitting corrosion. J Electroanal Chem 537:183–187

    Article  CAS  Google Scholar 

  32. Sheng X, Ting Y-P, Pehkonen SO (2007) The influence of sulphate-reducing bacteria biofilm on the corrosion of stainless steel AISI 316. Corros Sci 49:2159–2176

    Article  CAS  Google Scholar 

  33. Xu C, Zhang Y, Chen G, Zhu W (2008) Pitting corrosion behavior of 316L stainless steel in the media of sulphate-reducing and iron-oxidizing bacteria. Mater Charact 59:245–255

    Article  CAS  Google Scholar 

  34. Bastidas JM, Polo JL, Torres CL, Cano E (2001) A study on the stability of AISI 316L stainless steel pitting corrosion through its transfer function. Corros Sci 43:269–281

    Article  CAS  Google Scholar 

  35. Huttunen-Saarivirta E, Honkanen M, Lepistö T, Kuokkala V-T, Koivisto L, Berg CG (2012) Microbiologically influenced corrosion (MIC) in stainless steel heat exchanger. Appl Surf Sci 258:6512–6526

    Article  CAS  Google Scholar 

  36. Ling Y, Chen ZG, Guempl P, Kaesser M (2002) Influence of water pollution on MIC of stainless steel 304L. J Iron Steel Res Int 9:45–48

    CAS  Google Scholar 

  37. George RP, Muraleedharan P, Gnanamoorthy JB, Rao TS, Nair KVK (1995) Effect of seasonal changes in water quality on biofouling and corrosion in fresh water systems. In: Tiller AK, Sequeira CAC (eds) Microbial corrosion. The Institute of Materials, London, pp 261–275

    Google Scholar 

  38. Motoda S, Suzuki Y, Shinohara T, Tsujikawa S (1990) The effect of marine fouling on the ennoblement of electrode potential for stainless steels. Corros Sci 31:515–520

    Article  CAS  Google Scholar 

  39. Little B, Ray R, Wagner P, Lewandowski Z, Lee WC, Characklis WG, Mansfeld F (1991) Impact of biofouling on the electrochemical behavior of 304 stainless steel in natural seawater. Biofouling 3:45–59

    Article  CAS  Google Scholar 

  40. Marconnet C, Dagbert C, Roy M, Féron D (2008) Stainless steel ennoblement in freshwater: from exposure test to mechanisms. Corros Sci 50:2342–2352

    Article  CAS  Google Scholar 

  41. Hamilton WA (1985) Sulphate-reducing bacteria and anaerobic corrosion. Annu Rev Microbiol 39:195–217

    Article  CAS  Google Scholar 

  42. Kearns JR, Clayton CR, Halada GP, Gillow JB, Francis AJ (1992) The application of XPS to the study of MIC. In: Corrosion/92, NACE, Houston, Texas, paper no. 178

  43. Yuan SJ, Pehkonen SO (2007) Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study. Colloid Surf B-Interfaces 59:87–99

    Article  CAS  Google Scholar 

  44. Duan J, Hou B, Yu Z (2006) Characteristics of sulfide corrosion products on 316L stainless steel surfaces in the presence of sulfate-reducing bacteria. Mater Sci Eng C-Mater Biol Appl 26:624–629

    Article  CAS  Google Scholar 

  45. Briggs D, Seah MP (1990) Practical surface analysis, volume 1: auger and X-ray photoelectron spectroscopy, 2nd edn. Wiley, New York, p 202

    Google Scholar 

  46. Gutiérrez A, López MF, Pérez-Trujillo FJ, Hierro MP, Pedraza F (2000) Effects of Ce, Mo and Si ion implantation on the passive layer composition and high-temperature oxidation behaviour of AISI 304 stainless steel studied by soft X-ray absorption spectroscopy. Surf Interface Anal 30:130–134

    Article  Google Scholar 

  47. Sedriks AJ (1979) Corrosion of stainless steels. Wiley, New York

    Google Scholar 

  48. Landoulsi J, El Kirat K, Richrad C, Féron D, Pulvin S (2008) Enzymatic approach in microbial-influenced corrosion: a review based on stainless steels in natural waters. Environ Sci Technol 42:2233–2242

    Article  CAS  Google Scholar 

  49. Szklarska-Smialowska Z (1986) Pitting corrosion of metals. NACE, Houston

    Google Scholar 

  50. Kobrin G (1976) Corrosion by microbiological organisms in natural waters. Mater Performance 7:38–43

    Google Scholar 

  51. Starosvetsky J, Armon R, Groysmam A, Starosvetsky D (1999) Fouling of carbon steel heat exchanger caused by iron bacteria. Mater Performance 1:55–61

    Google Scholar 

  52. Dickinson WH, Caccavo F Jr, Lewandowski Z (1996) The ennoblement of stainless steels by manganic oxide biofouling. Corros Sci 38:1407–1422

    Article  CAS  Google Scholar 

  53. Linhardt P (1997) Corrosion of metals in natural waters influenced by manganese oxidizing microorganisms. Biodegradation 8:201–210

    Article  CAS  Google Scholar 

  54. George RP, Muraleedharan P, Parvathavarthini N, Khatak HS, Rao TS (2000) Microbiologically influenced corrosion of AISI type 304 stainless steels under fresh water biofilms. Mater Corros 51:213–218

    Article  CAS  Google Scholar 

  55. Puckorius PR (1993) Massive utility condenser failure caused by sulfide-producing bacteria. In: Corrosion/83, NACE, Houston, Texas, paper no. 248

  56. Brennenstuhl AM, Gendron TS, Cleland R (1993) Mechanisms of underdeposit corrosion in freshwater cooled austenitic alloy heat exchangers. Corros Sci 35:699–711

    Article  CAS  Google Scholar 

  57. Stern M, Geary AL (1957) Electrochemical polarization I. A theoretical analysis of the shape of polarization curves. J Electrochem Soc 104:56–63

    Article  CAS  Google Scholar 

  58. Liao J, Fukui H, Urakami T, Morisaki H (2010) Effect of biofilm on ennoblement and localized corrosion of stainless steel in fresh dam-water. Corros Sci 52:1393–1403

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank J. Izquierdo (Iberdrola Generación SA), F. Montero (Iberdrola Generación SA), E. Cano (CENIM–CSIC, Spain), M. Lorenzo (SCI Servicios de Control e Inspección SA), and J. Aparicio (SCI Servicios de Control e Inspección SA) for their help in the chemicals analyses and the XPS measurements. We also thank the employees of the Valdecañas dam and especially the staff who made the in situ experiments possible. This work was supported by the CICYT (Comisión Interministerial de Ciencia y Tecnología of Spain) under Grant MAT97-1043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Bastidas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno, D.A., Ibars, J.R., Polo, J.L. et al. EIS monitoring study of the early microbiologically influenced corrosion of AISI 304L stainless steel condenser tubes in freshwater. J Solid State Electrochem 18, 377–388 (2014). https://doi.org/10.1007/s10008-014-2390-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2390-6

Keywords

Navigation