Skip to main content
Log in

Characterization and Formability of Titanium/Aluminum Laminate Composites Fabricated by Hot Pressing

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The Ti/Al laminate composites were prepared by hot pressing to investigate the forming performance due to the corresponding potential applications in both the aerospace and auto industry. The bonding interface morphology and element distributions were characterized by SEM and EDS. The phase constituent was detected by XRD. It was observed that these composites presented good bonding interfaces between Ti and Al layers, and no low-sized voids and intermetallic compounds formed at the interface. In addition, the formability of these laminate composites was studied by the uniaxial tension tests, the limit drawing ratio (LDR) and the forming limit curve (FLC) experiments, respectively. The results indicated that the flow stress increased along with the strain rate increment. A constitutive equation was developed for deformation behavioral description of these laminate composites. The LDR value was 1.8, and the most susceptible region to present cracks was located at the punch profile radius. The forming limit curve of the laminate composites was located between the curves of titanium and aluminum and intersected with the major strain line at approximately 0.31. The macroscopic cracks of the FLC sample demonstrated a saw-toothed crack feature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Zhang, Y. Kou, Y.Y. Xia, and X. Zhang, Modulation of Strength and Plasticity of Multiscale Ni/Cu Laminated Composites, Mater. Sci. Eng. A, 2015, 636, p 216–220

    Article  Google Scholar 

  2. Y.E. Qi, Y.S. Zhang, and L.T. Hu, High-Temperature Self-lubricated Properties of Al2O3/Mo Laminated Composites, Wear, 2012, 280, p 1–4

    Article  Google Scholar 

  3. R.O. Ritchie, The Conflicts Between Strength and Toughness, Nat. Mater., 2011, 10(11), p 817–822

    Article  Google Scholar 

  4. K. Zhu, W.B. Yu, Y. Aman, and T. Jing, Synthesis, Microstructure and Mechanical Properties of a Bio-Inspired Ti-Intermetallic Multi-layered/SiCf-reinforced Ti-Matrix Hybrid Composite, J. Mater. Sci., 2016, 51(18), p 8747-8760

    Article  Google Scholar 

  5. M.Y. Fan, J. Domblesky, K. Jin, L. Qin, S.Q. Cui, X.Z. Guo, N. Kim, and J. Tao, Effect of Original Layer Thicknesses on the Interface Bonding and Mechanical Properties of Ti-Al Laminate Composites, Mater. Des., 2016, 99, p 535–542

    Article  Google Scholar 

  6. M. Ma, P. Huo, W.C. Liu, G.J. Wang, and D.M. Wang, Microstructure and Mechanical Properties of Al/Ti/Al Laminated Composites Prepared by Roll Bonding, Mater. Sci. Eng. A, 2015, 636, p 301–310

    Article  Google Scholar 

  7. D.V. Lazurenko, I.A. Bataev, V.I. Mali, A.A. Bataev, I.N. Maliutina, V.S. Lozhkin, M.A. Esikov, and A.M.J. Jorge, Explosively Welded Multilayer Ti-Al Composites: Structure and Transformation During Heat Treatment, Mater. Des., 2016, 102, p 122–130

    Article  Google Scholar 

  8. F.T. Kong, Y.Y. Chen, and D.L. Zhang, Interfacial Microstructure and Shear Strength of Ti–6Al–4V/TiAl Laminate Composite Sheet Fabricated by Hot Packed Rolling, Mater. Des., 2011, 32, p 3167–3172

    Article  Google Scholar 

  9. M. Samavatian, A. Halvaee, A. Amadeh, and S. Zakipour, Microstructure and Mechanical Properties of Al2024/Ti-6Al-4V Transient Liquid Phase Bonded Joint, J. Mater. Eng. Perform., 2015, 24(6), p 2526–2534

    Article  Google Scholar 

  10. S. Chatterjee, A. Sinha, D. Das, S. Ghosh, and A. Basumallick, Microstructure and Mechanical Properties of Al/Fe-aluminide In situ Composite Prepared by Reactive Stir Casting Route, Mater. Sci. Eng. A, 2013, 578, p 6–13

    Article  Google Scholar 

  11. A. Dziadoń, R. Mola, and L. Błaż, Formation of Layered Mg/eutectic Composite Using Diffusional Processes at the Mg-Al Interface, Arch. Metal. Mater., 2011, 56(3), p 677–684

    Google Scholar 

  12. P.J. Lee, A.A. Squitieri, D.C. Larbalestier, T. Takeuchi, N. Banno, T. Fukuzaki, and H. Wada, Microchemical and Microstructural Comparison of High Performance Nb3Al Composites, IEEE Trans. Appl. Supercond., 2003, 13(2), p 3398–3401

    Article  Google Scholar 

  13. Y. Guo, G. Liu, H. Jin, Z. Shi, and G. Qiao, Intermetallic Phase Formation in Diffusion-Bonded Cu/Al Laminates, J. Mater. Sci., 2011, 46(8), p 2467–2473

    Article  Google Scholar 

  14. M. Konieczny, Processing and Microstructural Characterisation of Laminated Ti-Intermetallic Composites Synthesised Using Ti and Cu Foils, Mater. Lett., 2008, 62(17), p 2600–2602

    Article  Google Scholar 

  15. I.A. Bataev, A.A. Bataev, V.I. Mali, and D.V. Pavliukovaa, Structural and Mechanical Properties of Metallic–Intermetallic Laminate Composites Produced by Explosive Welding and Annealing, Mater. Des., 2012, 35, p 225–234

    Article  Google Scholar 

  16. J.P. Liu, L.S. Luo, Y.Q. Su, Y.J. Xu, X.Z. Li, R.R. Chen, J.J. Guo, and H.Z. Fu, Numerical Simulation of Intermediate Phase Growth in Ti/Al Alternate Foils, Trans. Nonferr. Met. Soc., 2011, 21(3), p 598–603

    Article  Google Scholar 

  17. X. Wu, Review of Alloy and Process Development of TiAl Alloys, Intermetallics, 2006, 14(10), p 1114–1122

    Article  Google Scholar 

  18. K. Kothari, R. Radhakrishnan, and N.M. Wereley, Advances in Gamma Titanium Aluminides and Their Manufacturing Techniques, Prog. Aerosp. Sci., 2012, 55, p 1–16

    Article  Google Scholar 

  19. J.P. Liu, Y.Q. Su, L.S. Luo, H. Chen, Y.J. Xu, J.J. Guo, and H.Z. Fu, Fabrication of Wavy γ-TiAl Based Sheet with Foil Metallurgy, Trans. Nonferr. Met. Soc., 2012, 22(1), p 72–77

    Article  Google Scholar 

  20. L.I. Duarte, F. Viana, A.S. Ramos, M.T. Vieira, C. Leinenbach, U.E. Klotz, and M.F. Vieira, Diffusion Bonding of γ-TiAl Using Modified Ti/Al Nanolayers, J. Alloy. Compd., 2012, 536, p 424–427

    Article  Google Scholar 

  21. R.K. Gupta, B. Pant, and P.P. Sinha, Theory and Practice of γ + α2Ti Aluminide: A Review, Trans. Indian Met., 2014, 67(2), p 143–165

    Article  Google Scholar 

  22. A.H. Assari and B. Eghbali, Interfacial Layers Evolution During Annealing in Ti-Al Multi-laminated Composite Processed Using Hot Press and Roll Bonding, Met. Mater. Int., 2016, 22(5), p 915–923

    Article  Google Scholar 

  23. H.L. Yu, C. Lu, A.K. Tieu, H.J. Li, A. Godbole, and C.L. Kong, Annealing Effect on Microstructure and Mechanical Properties of Al/Ti/Al Laminate Sheets, Mater. Sci. Eng. A, 2016, 660, p 159–204

    Article  Google Scholar 

  24. D.E. Alman, J.A. Hawk, A.V. Petty, Jr., and J.C. Rawers, Processing Intermetallic Composites by Self-propagating, High-Temperature Synthesis, JOM, 1994, 46(3), p 31–35

    Article  Google Scholar 

  25. F. Kong, Y. Chen, and D. Zhang, Interfacial Microstructure and Shear Strength of Ti-6Al-4V/TiAl Laminate Composite Sheet Fabricated by Hot Packed Rolling, Mater. Des., 2011, 32(6), p 3167–3172

    Article  Google Scholar 

  26. J. Liu, Y. Su, Y. Xu, L. Luo, J. Guo, and H. Fu, First Phase Selection in Solid Ti/Al Diffusion Couple, Rare Met. Mater. Eng., 2011, 40, p 753–756

    Article  Google Scholar 

  27. Y. Wei, W. Aiping, Z. Guisheng, and R. Jialie, Formation Process of the Bonding Joint in Ti/Al Diffusion Bonding, Mater. Sci. Eng. A, 2008, 480, p 456–463

    Article  Google Scholar 

  28. L. Xu, Y.Y. Cui, Y.L. Hao, and R. Yang, Growth of Intermetallic Layer in Multi-laminated Ti/Al Diffusion Couples, Mater. Sci. Eng. A, 2006, 435–436, p 638–647

    Article  Google Scholar 

  29. Y.B. Sun, Y.Q. Zhao, D. Zhang, C.Y. Liu, H.Y. Diao, and C.L. Ma, Multilayered Ti-Al Intermetallic Sheets Fabricated by Cold Rolling and Annealing of Titanium and Aluminum Foils, Trans. Nonferr. Met. Soc., 2011, 21, p 1722–1727

    Article  Google Scholar 

  30. Y.B. Sun, M.W. Liu, S.J. Ge, F.M. Ma, and C.L. Ma, Preparation of Multilayered Ti-Al Alloys by Solid Reaction, Mater. Sci. Forum, 2013, 747–748, p 1–8

    Google Scholar 

  31. Y. Du, G.H. Fan, T.B. Yu, N. Hansen, L. Geng, and X.X. Huang, Laminated Ti-Al Composites: Processing, Structure and Strength, Mater. Sci. Eng. A, 2016, 673, p 572–580

    Article  Google Scholar 

  32. F.K. Chen and K.H. Chiu, Stamping Formability of Pure Titanium Sheets, Mater. Process. Technol., 2005, 170, p 181–186

    Article  Google Scholar 

  33. O.M. Badr, B. Rolfe, P. Hodgson, and M. Weiss, Forming of High Strength Titanium Sheet at Room Temperature, Mater. Des., 2015, 66, p 618–626

    Article  Google Scholar 

  34. L.F. Li, Z. Zhang, and G.T. Shen, Effect of Grain Size on the Tensile Deformation Mechanisms of Commercial Pure Titanium as Revealed by Acoustic Emission, JMEP, 2015, 24, p 1975–1986

    Article  Google Scholar 

  35. J. Kachera and I.M. Robertson, In situ TEM Characterisation of Dislocation Interactions in α-titanium, Philos. Mag., 2016, 96(14), p 1437–1447

    Article  Google Scholar 

  36. A.S. Khan and H. Liu, Strain Rate and Temperature Dependent Fracture Criteria for Isotropic and Anisotropic Metals, Int. J. Plast., 2012, 37, p 1–15

    Article  Google Scholar 

  37. X. Tian and Y. Zhang, Mathematical Description for Flow Curves of Some Stable Austenitic Steels, Mater. Sci. Eng. A, 1994, 174(1), p 1–3

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (No. 51475231), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Funding of Jiangsu Innovation Program for Graduate Education (No. KYLX_0263), Foundation of Graduate Innovation Center in NUAA (kfjj20150606) and the Fundamental Research Funds for the Central Universities (No. 20150027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, L., Wang, H., Cui, S. et al. Characterization and Formability of Titanium/Aluminum Laminate Composites Fabricated by Hot Pressing. J. of Materi Eng and Perform 26, 3579–3587 (2017). https://doi.org/10.1007/s11665-017-2785-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2785-5

Keywords

Navigation