Skip to main content
Log in

Microstructure and Mechanical Properties of Ti/Al/Ti Laminated Composites Prepared by Hot Rolling

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Ti-6Al-4V/Al 3003/Ti-6Al-4V laminated composites were fabricated by hot roll bonding. The microstructure and mechanical properties of the Ti/Al/Ti laminated composites were investigated. The Ti/Al/Ti laminated composites exhibited a good Ti/Al interfacial bonding with straight interface. The development of microstructure through the thickness of Al layer was inhomogeneous. The initial grains in the region near the interface of Al/Ti were markedly fragmented into equiaxed fine grains, whereas the grains in the center of Al layer were markedly elongated along the rolling direction. The inhomogeneity of deformation through the thickness of Al layer can be attributed to the effect of the uncoordinated deformation between Al and Ti layers and the inhomogeneity of initial microstructure. For the Ti/Al/Ti laminated composites fabricated with approximately 37% reduction, the UTS and YS increased with increasing rolling temperature, while the EL increased slightly. For the Ti/Al/Ti laminated composites fabricated at 400 °C, the UTS and YS increased significantly with increasing rolling reduction, whereas the EL decreased. The bonding strength increased with increasing rolling temperature and reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Wadsworth and D.R. Lesuer, Ancient and Modern Laminated Composites-from the Great Pyramid of Gizeh to Y2K, Mater. Charact., 2000, 45(4–5), p 289–313

    Article  Google Scholar 

  2. H.S. Liu, B. Zhang, and G.P. Zhang, Enhanced Toughness and Fatigue Strength of Cold Roll Bonded Cu/Cu Laminated Composites with Mechanical Contrast, Scripta Mater., 2011, 65(10), p 891–894

    Article  Google Scholar 

  3. W.A. Spitzig, A.R. Pelton, and F.C. Laabs, Characterization of the Strength and Microstructure of Heavily Cold Worked Cu-Nb Composites, Acta Metall., 1987, 35(10), p 2427–2442

    Article  Google Scholar 

  4. F. Carreño, J. Chao, M. Pozuelo, and O.A. Ruano, Microstructure and Fracture Properties of an Ultrahigh Carbon Steel-Mild Steel Laminated Composite, Scripta Mater., 2003, 48(8), p 1135–1140

    Article  Google Scholar 

  5. J.G. Luo and V.L. Acoff, Using Cold Roll Bonding and Annealing to Process Ti/Al Multi-Layered Composites from Elemental Foils, Mater. Sci. Eng., A, 2004, 379(1–2), p 164–172

    Article  Google Scholar 

  6. J. Peng, Z. Liu, P. Xia, M. Lin, and S. Zeng, On the Interface and Mechanical Property of Ti/Al-6% Cu-0.5% Mg-0.4% Ag Bimetal Composite Produced by Cold-Roll Bonding and Subsequent Annealing Treatment, Mater. Lett., 2012, 74(5), p 89–92

    Article  Google Scholar 

  7. M. Ma, P. Huo, W.C. Liu, G.J. Wang, and D.M. Wang, Microstructure and Mechanical Properties of Al/Ti/Al Laminated Composites Prepared by Roll Bonding, Mater. Sci. Eng., A, 2015, 636, p 301–310

    Article  Google Scholar 

  8. M. Eizadjou, H.D. Manesh, and K. Janghorban, Investigation of Roll Bonding Between Aluminum Alloy Strips, Mater. Des., 2008, 29(4), p 909–913

    Article  Google Scholar 

  9. L. Zhang, L. Meng, S.P. Zhou, and F.T. Yang, Behaviors of the Interface and Matrix for the Ag/Cu Bimetallic Laminates Prepared by Roll Bonding and Diffusion Annealing, Mater. Sci. Eng., A, 2004, 371(1–2), p 65–71

    Article  Google Scholar 

  10. J.M. Lee, B.R. Lee, and S.B. Kang, Control of Layer Continuity in Metallic Multilayers Produced by Deformation Synthesis Method, Mater. Sci. Eng., A, 2005, 406(1–2), p 95–101

    Article  Google Scholar 

  11. M. Movahedi, A.H. Kokabi, and S.M.S. Reihani, Investigation on the Bond Strength of Al-1100/St-12 Roll Bonded Sheets, Optimization and Characterization, Mater. Des., 2011, 32(6), p 3143–3149

    Article  Google Scholar 

  12. X. Li, G. Zu, M. Ding, Y. Mu, and P. Wang, Interfacial Microstructure and Mechanical Properties of Cu/Al Clad Sheet Fabricated by Asymmetrical Roll Bonding and Annealing, Mater. Sci. Eng., A, 2011, 529, p 485–491

    Article  Google Scholar 

  13. G. Heness, R. Wuhrer, and W.Y. Yeung, Interfacial Strength Development of Roll-Bonded Aluminium/Copper Metal Laminates, Mater. Sci. Eng., A, 2008, 483–484, p 740–742

    Article  Google Scholar 

  14. X. Li, G. Zu, and P. Wang, Effect of Strain Rate on Tensile Performance of Al/Cu/Al Laminated Composites Produced by Asymmetrical Roll Bonding, Mater. Sci. Eng., A, 2013, 575, p 61–64

    Article  Google Scholar 

  15. M. Movahedi, H.R. Madaah-Hosseini, and A.H. Kokabi, The Influence of Roll Bonding Parameters on the Bond Strength of Al-3003/Zn Soldering Sheets, Mater. Sci. Eng., A, 2008, 487, p 417–423

    Article  Google Scholar 

  16. M. Abbasi and M.R. Toroghinejad, Effects of Processing Parameters on the Bond Strength of Cu/Cu Roll-Bonded Strips, J. Mater. Process. Technol., 2010, 210(3), p 560–563

    Article  Google Scholar 

  17. H. Chang, M.Y. Zheng, C. Xu, G.D. Fan, H.G. Brokmeier, and K. Wu, Microstructure and Mechanical Properties of the Mg/Al Multilayer Fabricated by Accumulative Roll Bonding (ARB) at Ambient Temperature, Mater. Sci. Eng., A, 2012, 543, p 249–256

    Article  Google Scholar 

  18. R. Jamaati and M.R. Toroghinejad, Effect of Friction, Annealing Conditions and Hardness on the Bond Strength of Al/Al Strips Produced by Cold Roll Bonding Process, Mater. Des., 2010, 31(9), p 4508–4513

    Article  Google Scholar 

  19. R. Jamaati and M.R. Toroghinejad, Investigation of the Parameters of the Cold Roll Bonding (CRB) Process, Mater. Sci. Eng., A, 2010, 527, p 2320–2326

    Article  Google Scholar 

  20. H. Yan and J.G. Lenard, A Study of Warm and Cold Roll-Bonding of an Aluminium Alloy, Mater. Sci. Eng., A, 2004, 385, p 419–428

    Article  Google Scholar 

  21. J. Inoue, S. Nambu, Y. Ishimoto, and T. Koseki, Fracture Elongation of Brittle/Ductile Multilayered Steel Composites with a Strong Interface, Scripta Mater., 2008, 59(10), p 1055–1058

    Article  Google Scholar 

  22. S. Nambu, M. Michiuchi, J. Inoue, and T. Koseki, Effect of Interfacial Bonding Strength on Tensile Ductility of Multilayered Steel Composites, Compos. Sci. Technol., 2009, 69(11–12), p 1936–1941

    Article  Google Scholar 

  23. K.S. Lee, H.Y. Dong, H.K. Kim, Y.N. Kwon, and Y.S. Lee, Effect of Annealing on the Interface Microstructure and Mechanical Properties of a STS-Al-Mg 3-ply Clad Sheet, Mater. Sci. Eng., A, 2012, 556, p 319–330

    Article  Google Scholar 

  24. M. Masoumi and E. Emadoddin, Interface Characterization and Formability of Two and Three-Layer Composite Sheets Manufactured by Roll Bonding, Mater. Des., 2013, 44, p 392–396

    Article  Google Scholar 

  25. M. Pozuelo, F. Carreño, and O.A. Ruano, Delamination Effect on the Impact Toughness of an Ultrahigh Carbon-Mild Steel Laminate Composite, Compos. Sci. Technol., 2006, 66(15), p 2671–2676

    Article  Google Scholar 

  26. S.L. Semiatin and H.R. Piehler, Formability of Sandwich Sheet Materials in Plane Strain Compression and Rolling, Metall. Mater. Trans. A, 1978, 10(1), p 97–107

    Article  Google Scholar 

  27. D. Yang, P. Cizek, P. Hodgson, and C. Wen, Ultrafine Equiaxed-Grain Ti/Al Composite Produced by Accumulative Roll Bonding, Scripta Mater., 2010, 62(5), p 321–324

    Article  Google Scholar 

  28. X. Sauvage, G.P. Dinda, and G. Wilde, Non-Equilibrium Intermixing and Phase Transformation in Severely Deformed Al/Ni Multilayers, Scripta Mater., 2007, 56(3), p 181–184

    Article  Google Scholar 

  29. C.Y. Chung, M. Zhu, and C.H. Man, Effect of Mechanical Alloying on the Solid State Reaction Processing of Ni-36.5 at.% Al Alloy, Intermetallics, 2002, 10(9), p 865–871

    Article  Google Scholar 

  30. M. Pozuelo, F. Carreño, M. Carsí, and O.A. Ruano, Influence of Interfaces on the Mechanical Properties of Ultrahigh Carbon Steel Multilayer Laminates, Int. J. Mater. Res., 2007, 98(1), p 47–52

    Article  Google Scholar 

  31. D.R. Lesuer, C.K. Syn, O.D. Sherby, J. Wadsworth, J.J. Lewandowski, and W.H. Hunt, Mechanical Behaviour of Laminated Metal Composites, Int. Mater. Rev., 1995, 41(5), p 169–197

    Article  Google Scholar 

  32. S. Lee, J. Wadsworth, and O.D. Sherby, Tensile Properties of Laminated Composites Based on Ultrahigh Carbon Steel, J. Compos. Mater., 1991, 25(7), p 842–853

    Article  Google Scholar 

  33. K.S. Lee, J.S. Kim, Y.M. Jo, S.E. Lee, J. Heo, Y.W. Chang, and Y.S. Lee, Interface-correlated Deformation Behavior of a Stainless Steel-Al-Mg 3-ply Composite, Mater. Charact., 2013, 75, p 138–149

    Article  Google Scholar 

  34. L. Ghalandari, M.M. Mahdavian, and M. Reihanian, Microstructure Evolution and Mechanical Properties of Cu/Zn Multilayer Processed by Accumulative Roll Bonding (ARB), Mater. Sci. Eng., A, 2014, 593, p 145–152

    Article  Google Scholar 

  35. N.L. Dong and Y.K. Kim, Tensile Properties of Stainless Steel-Clad Aluminium Sandwich Sheet Metals, J. Mater. Sci., 1988, 23(4), p 1436–1442

    Article  Google Scholar 

  36. B.X. Liu, L.J. Huang, B. Wang, and L. Geng, Effect of Pure Ti Thickness on the Tensile Behavior of Laminated Ti-TiBw/Ti Composites, Mater. Sci. Eng., A, 2014, 617, p 115–120

    Article  Google Scholar 

  37. H.S. Liu, B. Zhang, and G.P. Zhang, Delaying Premature Local Necking of High-Strength Cu: A Potential Way to Enhance Plasticity, Scripta Mater., 2011, 64(1), p 13–16

    Article  Google Scholar 

  38. X.L. Ma, C.X. Huang, W.Z. Xu, H. Zhou, X.L. Wu, and Y.T. Zhu, Strain Hardening and Ductility in a Coarse-Grain/Nanostructure Laminate Material, Scripta Mater., 2015, 103, p 57–60

    Article  Google Scholar 

  39. H.A. Mohamed and J. Washburn, Mechanism of Solid State Pressure Welding, Weld. J., 1975, 55, p 302s–310s

    Google Scholar 

  40. L.R. Vaidyanath, M.G. Nicholas, and D.R. Milner, Pressure Welding by Rolling, Br. Weld. J., 1959, 6, p 13–28

    Google Scholar 

  41. J.A. Cave and J.D. Williams, The Mechanism of Cold Pressure Welding by Rolling, J. Inst. Metals, 1973, 101(7), p 203–207

    Google Scholar 

  42. H. Granjun, Fundamental of Welding Metallurgy, Abington Publishing, Cambridge, 1991

    Book  Google Scholar 

  43. J.M. Parks, Recrystallization Welding, Weld. J., 1953, 32(5), p 209s–221s

    Google Scholar 

  44. J. Cave, The Mechanism of Cold Pressure Welding by Rolling, J. Inst. Met., 1973, 101(7), p 203–207

    Google Scholar 

  45. W.C. Sherwood and D.R. Milner, The Effect of Vacuum Machining on the Cold Welding of Some Metals, J. Inst. Met., 1969, 97(1), p 1–5

    Google Scholar 

  46. X.K. Peng, G. Heness, and W.Y. Yeung, Effect of Rolling Temperature on Interface and Bond Strength Development of Roll Bonded Copper/Aluminium Metal Laminates, J. Mater. Sci., 1999, 34(2), p 277–281

    Article  Google Scholar 

  47. M. Eizadjou, H.D. Manesh, and K. Janghorban, Mechanism of Warm and Cold Roll Bonding of Aluminum Alloy Strips, Mater. Des., 2009, 30(10), p 4156–4161

    Article  Google Scholar 

  48. S.A. Hosseini, M. Hosseini, and H.D. Manesh, Bond Strength Evaluation of Roll Bonded Bi-layer Copper Alloy Strips in Different Rolling Conditions, Mater. Des., 2011, 32(1), p 76–81

    Article  Google Scholar 

  49. J. Yong, P. Dashu, L. Dong, and L. Luoxing, Analysis of Clad Sheet Bonding by Cold Rolling, J. Mater. Process. Technol., 2000, 105(1–2), p 32–37

    Article  Google Scholar 

  50. G.Y. Tzou and M.N. Huang, Analytical Modified Model of the Cold Bond Rolling of Unbounded Double-Layers Sheet Considering Hybrid Friction, J. Mater. Process. Technol., 2003, 140(1–3), p 622–627

    Article  Google Scholar 

  51. A. Shabani, M.R. Toroghinejad, and A. Shafyei, Effect of Post-Rolling Annealing Treatment and Thickness of Nickel Coating on the Bond Strength of Al-Cu Strips in Cold Roll Bonding Process, Mater. Des., 2012, 40, p 212–220

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (863 Program, No. 2013AA031304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. C. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M., Meng, X. & Liu, W.C. Microstructure and Mechanical Properties of Ti/Al/Ti Laminated Composites Prepared by Hot Rolling. J. of Materi Eng and Perform 26, 3569–3578 (2017). https://doi.org/10.1007/s11665-017-2769-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2769-5

Keywords

Navigation