Skip to main content
Log in

Formability of sandwich sheet materials in plane strain compression and rolling

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The stress states developed during room temperature, plane strain compression modes of deformation of stainless steel clad aluminum and aluminum clad strainless steel sheets have been investigated in order to gain insight into the formability of bonded ductile sandwich sheet materials in primary metalworking processes. Assuming uniform, isostrain deformation in the component layers, sandwich compression stress-strain curves were predicted to be rule of mixtures averages of component compression stress-strain curves. These predictions showed good agreement with experimental data when friction and in-homogeneous deformation were taken into account. Since the through-thickness applied pressure can be assumed to be the same in both components of thin sandwich sheet materials, in-plane stresses which are tensile in the harder component and compressive in the softer component of a clad sheet are developed in order to satisfy the yield conditions. The nature of these in-plane stresses was confirmed by measurements of residual stress distributions in rolled clad sheet specimens, and it was shown how the tensile stress in the harder component may lead to unstable flow and failure of this component during forming. The observed failures were similar in both plane-strain indentation and rolling tests. Although the initiation of instability in symmetric clad sheet metals appears to be independent of the arrangement of the component layers, the process of final localization leading to fracture was observed to depend heavily on the layer arrangement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Orowan:Metal Transformations, p. 173, Gordon and Breach, New York, 1968.

    Google Scholar 

  2. A. Nactai:J. Appl. Mech., 1939, vol. 6, p. A54.

    Google Scholar 

  3. A. P. Green:Phil. Mag., 1951, vol. 42, p. 900.

    Google Scholar 

  4. A. B. Watts and H. Ford:Proc. Inst. Mech. Eng., 1952–1953, vol. 1B, p. 448.

    Google Scholar 

  5. J. F. W. Bishop:J. Mech. Phys. Solids, 1958, vol. 6, p. 132.

    Article  Google Scholar 

  6. R. Hill:The Mathematical Theory of Plasticity, Oxford University Press, London, 1950.

    Google Scholar 

  7. L. Prandtl:Z. Angew. Math. Mech., 1923, vol. 3, p. 401.

    Article  Google Scholar 

  8. I.F. Collins:Int. Mech. Sri., 1969,vol. 11,p. 971.

    Article  Google Scholar 

  9. E. Orowan:Proc. Inst. Mech. Eng., 1943, vol. 150, p. 140.

    Google Scholar 

  10. J. M. Alexander:Proc. Inst. Mech. Eng., 1955,vol. 169, p. 1021.

    Google Scholar 

  11. D.R. Bland and H. Ford:Proc. Inst. Mech. Eng., 1948, vol. 159, p. 144.

    Google Scholar 

  12. C. L. Smith, F. H. Scott, and W. Sylwestrowicz:J. Iron Steel Inst., 1952, vol. I79,p. 347.

    Google Scholar 

  13. H.Foti:Met. Rev., 1957, vol. 2, p. 1.

    Google Scholar 

  14. J. E. Hockett:Trans. ASM, 1960, vol. 52, p. 675.

    Google Scholar 

  15. J.M. Alexander:Proc. Roy. Soc, 1972, vol. 326A, p. 535.

    Google Scholar 

  16. R. R. Arnold and P. W. Whitton:Proc. Inst. Mech. Eng., 1959, vol. 173, p. 241.

    Google Scholar 

  17. G. E. Arkulis:Compound Plastic Deformation of Layers of Different Metals, Daniel Davey & Co., Jerusalem, 1965.

    Google Scholar 

  18. A. S. Weinstein and O. Pawelski:Proc. Eighth Inter. Machine Tool Design and Res. Conf., p. 961, Pergamon Press, Oxford, 1968.

    Google Scholar 

  19. A. A. Afonja and D. H. Sansome:Int. J. Mech. Sci., 1973, vol. 15, p. 1.

    Article  Google Scholar 

  20. A. G. Atkins and A. S. Weinstein:Int. J. Mech. Sci., 1970, vol. 12, p. 641.

    Article  Google Scholar 

  21. P. de Meester, A. Deruyttere, and M. J. Brabers:J. Inst. Metals, 1970, vol. 98, p. 86.

    Google Scholar 

  22. T. Ertürk, H. A. Kuhn, and A. Lawley:Met. Trans., 1974, vol. 5, p. 2295.

    Article  Google Scholar 

  23. J.B.Ulam: U.S.Patent 3,210,840,October 12,1965.

  24. C. S. Barrett and T. B. Massalski:Structure of Metals, McGraw-Hill, New York, 1966.

    Google Scholar 

  25. S. L. Semiatin and H. R. Piehler:Met. Trans. A, 1979, vol. 10A, pp. 85–96.

    CAS  Google Scholar 

  26. H. Ford:Proc. Inst. Mech. Eng., 1948, vol. 159, p. 115.

    Google Scholar 

  27. S. L. Semiatin and H. R. Piehler: Proc. NAMRC-III, p. 231, Carnegie Press, Pittsburgh, 1975.

    Google Scholar 

  28. D. O. Leeser and R. A. Daane:Proc. SESA, 1954, vol. 12, p. 203.

    Google Scholar 

  29. A. Kelley and G. J. Davies:Met. Reviews, 1965, vol. 10, p. 1.

    Google Scholar 

  30. H. R. Piehler:Trans. TMS-AIME, 1965, vol. 233, p. 12.

    Google Scholar 

  31. R. Hawkins and J. C. Wright:J. Inst. Metals, 1971, vol. 99, p. 357.

    CAS  Google Scholar 

  32. J. G. Beese and G. M. Bram:J. Eng. Mater. Technol., Trans. ASME, 1975, vol. 97, p. 10.

    Google Scholar 

  33. A. Mendelson:Plasticity: Theory and Application, MacMillan, New York, 1968.

    Google Scholar 

  34. G. W. Rowe:An Introduction to the Principles of Metalworking, St. Martin’s Press, New York, 1965.

    Google Scholar 

  35. W. A. Backofen, W. F. Hosford, Jr., and J. J. Burke:Trans. ASM, 1962, vol. 55, p. 264.

    CAS  Google Scholar 

  36. G. N. White and D. C. Drucker:J. Appl. Phys., 1950, vol. 21, p. 1013.

    Article  Google Scholar 

  37. P. W. Whitton and H. Ford:Proc. Inst. Mech. Eng., 1955, vol. 169, p. 123.

    Google Scholar 

  38. S. L. Semiatin: Ph.D. Thesis, Carnegie-Mellon University, Pittsburgh, Pa., 1977.

    Google Scholar 

  39. R. McC. Baker, R. E. Ricksecker, and W. M. Baldwin, Jr.:Trans. AME, 1948, vol. 175, p. 332.

    Google Scholar 

  40. J. M. Capus and M. G. Cockroft:J. Inst. Metals, 1961–1962, vol. 90, p. 289.

    Google Scholar 

  41. A. S. Weinstein:Int. Reserach in Production Engineering, p. 374, ASME, New York, 1963.

    Google Scholar 

  42. W. A. Backofen:Deformation Processing, Addison Wesley Publishing Company, Reading, Massachusetts, 1972.

    Google Scholar 

  43. G. Cusminsky and F. Ellis:J. Inst. Metals, 1967, vol. 95, p. 33.

    CAS  Google Scholar 

  44. K. Brown:J. Inst. Metals, 1972, vol. 100, p. 341.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

S. L. SEMIATIN, formerly Graduate Student, Department of Metallurgy and Materials Science, Carnegie-Mellon University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semiatin, S.L., Piehler, H.R. Formability of sandwich sheet materials in plane strain compression and rolling. Metall Trans A 10, 97–107 (1979). https://doi.org/10.1007/BF02686412

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02686412

Keywords

Navigation